22 research outputs found
Combined effects of anisotropy and tension-compression asymmetry on the torsional response of AZ31 Mg
In this paper it is demonstrated that only by accounting for the combined effects of anisotropy and tension-compression asymmetry at polycrystal level, it is possible to explain and accurately predict the room-temperature torsional response of a strongly textured AZ31 Mg material. This is shown by using two modeling frameworks, namely: a viscoplastic self-consistent (VPSC) polycrystal model, and a macroscopic plasticity model based on an yield criterion, developed by Cazacu et al. (2006), that accounts for both orthotropy and tension-compression asymmetry in plastic flow. It is shown that unlike Hill's (1948) criterion, the latter macroscopic criterion quantitatively predicts the experimental results, namely: that the sample with axial direction along the rolling direction contracts, while the sample with axial direction along the normal direction elongates. Moreover, it is demonstrated that these experimentally observed axial strain effects can be quantitatively predicted with the VPSC polycrystal model, only if both slip and twinning are considered operational at single crystal level. On the other hand, if it is assumed that the plastic deformation is fully accommodated by crystallographic slip, the axial strains predicted by VPSC are very close with that predicted with Hill (1948) criterion, which largely underestimates the measured axial strain in the rolling direction, and predicts zero axial strain in the normal direction. (C) 2015 Elsevier Ltd. All rights reserved.X111513Ysciescopu
ESAFORM 2021 cup drawing benchmark of an Al alloy: Critical follow up analysis of its potentials
publishedVersio
On the effect of the matrix tension–compression asymmetry on damage evolution in porous plastic solids
Constitutive modelling of plastic deformation and damage in anisotropic high-purity titanium and validation using ex-situ and in-situ tomography data
New Interpretation of Cyclic Swift Effects
The generally accepted view is that induced plastic anisotropy is the main reason for accumulation of axial strains during monotonic and cyclic free-end torsion. In this paper, analytical results and numerical simulations using an elastic/plastic model with yielding described by the isotropic form of Cazacu et al. (2006) criterion and isotropic hardening point to another important cause of this phenomenon. It is shown that such phenomenon can occur in an isotropic material, a slight difference between the uniaxial yield stresses in tension and compression of the material leading to a build-up of inelastic axial strains during cyclic torsion at constant strain amplitude. It is demonstrated that the ratio between the uniaxial yield stresses in tension and compression dictates whether permanent shortening or lengthening of the specimen occurs. Furthermore, it is predicted that by axially preloading the material below its plastic threshold and then subject it to strain controlled cyclic torsion under constant axial load, the axial effects may be either reinforced or reduced. Thus, for any given isotropic material it is possible to estimate the value of the constant load and the strain amplitude that need to be prescribed in order to eliminate these effects. (C) 2013 Elsevier Masson SAS. All rights reserved.X1154sciescopu
On the influence of damage evolution in an incompressible material with matrix displaying tension-compression asymmetry
AbstractA strong difference between the behavior in tension versus compression is observed at the polycrystal level, if either twinning or non-Schmid type slip are contributors to plastic deformation at the single crystal level. Despite recent progress in modeling the effects of this asymmetry in yielding, its influence on damage evolution remains a challenge. In a recent paper [1] we presented a new constitutive model for voided polycrystal that incorporates the effects of the tension-compression asymmetry of the incompressible matrix on the overall dilatational plastic behavior. In this contribution, this model is used to investigate the influence of the tension-compression asymmetry of the matrix on void evolution for uniaxial loading conditions. It is shown that if the matrix tensile strength is higher than its compressive strength, void growth and damage distribution are similar to that in classical materials obeying Gurson's [2] criterion. On the other hand, for certain porous polycrystals in which the matrix tensile strength is lower than its compressive strength, void growth rate is much slower. Damage distribution is significantly different; the location of the zone of maximum porosity shifts from the center of the specimen outwards. Furthermore, the influence of the evolving microstructure on void growth is studied. It is shown that void growth is significantly affected by the rate of change of the matrix strength differential with plastic strain
Correlation between swift effects and tension-compression asymmetry in various polycrystalline materials
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed. In this paper, a correlation between Swift effects and the stress-strain behavior in uniaxial tension and compression is established. It is based on an elastic-plastic model that accounts for the combined influence of anisotropy and tension-compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31-Mg alloy confirm the correlation established in this work between tension-compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction. (C) 2014 Elsevier Ltd. All rights reserved.X1199sciescopu
