7,107 research outputs found

    Reionization of Hydrogen and Helium by Early Stars and Quasars

    Get PDF
    We compute the reionization histories of hydrogen and helium due to the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, z_tran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star-formation efficiency, f_esc f_*. We constrain the allowed range of these free parameters at high redshifts based on the lack of the HI Gunn-Peterson trough at z<6 and the upper limit on the total intergalactic optical depth for electron scattering, tau_es<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of f_esc f_* and z_tran lead to an early peak in the ionized fraction due to metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely an early HII or HeIII overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, tau_es does not correspond directly to the reionization redshift. We generically find values of tau_es>7%, that should be detectable by the MAP satellite.Comment: 33 pages, 10 figures, Accepted for publication in Ap

    Representations of p-brane topological charge algebras

    Full text link
    The known extended algebras associated with p-branes are shown to be generated as topological charge algebras of the standard p-brane actions. A representation of the charges in terms of superspace forms is constructed. The charges are shown to be the same in standard/extended superspace formulations of the action.Comment: 22 pages. Typos fixed, refs added. Minor additions to comments sectio

    Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antiferromagnet Y2Mo2O7

    Full text link
    Some frustrated pyrochlore antiferromagnets, such as Y2Mo2O7, show a spin-freezing transition and magnetic irreversibilities below a temperature Tf similar to what is observed nonlinear magnetization measurements on Y2Mo2O7 that provide strong evidence that there is an underlying thermodynamic phase transition at Tf, which is characterized by critical exponents \gamma \approx 2.8 and \beta \approx 0.8. These values are typical of those found in random spin glasses, despite the fact that the level of random disorder in Y2Mo2O7 is immeasurably small.Comment: Latex file, calls for 4 encapsulated postscript figures (included). Submitted to Phys. Rev. Letters

    Dzyaloshinski-Moriya interactions in the kagome lattice

    Full text link
    The kagom\'e lattice exhibits peculiar magnetic properties due to its strongly frustated cristallographic structure, based on corner sharing triangles. For nearest neighbour antiferromagnetic Heisenberg interactions there is no Neel ordering at zero temperature both for quantum and classical s pins. We show that, due to the peculiar structure, antisymmetric Dzyaloshinsky-Moriya interactions (D.(Si×Sj){\bf D} . ({\bf S}_i \times {\bf S}_j)) are present in this latt ice. In order to derive microscopically this interaction we consider a set of localized d-electronic states. For classical spins systems, we then study the phase diagram (T, D/J) through mean field approximation and Monte-Carlo simulations and show that the antisymmetric interaction drives this system to ordered states as soon as this interaction is non zero. This mechanism could be involved to explain the magnetic structure of Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200

    Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection

    Full text link
    The stability of the disordered ground state of the classical Heisenberg pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations by introducing an additional exchange interaction JJ' that interpolates between the pyrochlore lattice (J=0J'=0) and the face-centered cubic lattice (J=JJ'=J). It is found that for J/JJ'/J as low as J/J0.01J'/J\ge 0.01, the system is long range ordered : the disordered ground state of the pyrochlore antiferromagnet is unstable when introducing very small deviations from the pure J=0J'=0 limit. Furthermore, it is found that the selected phase is a collinear state energetically greater than the incommensurate phase suggested by a mean field analysis. To our knowledge this is the first example where entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to Phys. Rev.

    High resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey III. DA white dwarfs

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200912531Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods. The spectra are compared with theoretical model atmospheres using a fitting technique. Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).Peer reviewe

    Classical generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for classical geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the magnetic susceptibility and specific heat are compared with Monte Carlo data for the classical Heisenberg model for the pyrochlore and kagome lattices. The predictions for the susceptibility are found to be essentially exact, and the corresponding predictions for the specific heat are found to be in very good agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of the pyrochlore specific heat correcte

    Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid

    Full text link
    The quantum pyrochlore antiferromagnet is studied by perturbative expansions and exact diagonalization of small clusters. We find that the ground state is a spin-liquid state: The spin-spin correlation functions decay exponentially with distance and the correlation length never exceeds the interatomic distance. The calculated magnetic neutron diffraction cross section is in very good agreement with experiments performed on Y(Sc)Mn2. The low energy excitations are singlet-singlet ones, with a finite spin gap.Comment: 4 pages, 4 figure

    Zeeman tomography of magnetic white dwarfs. II, The quadrupole-dominated magnetic field of HE 1045-0908

    Get PDF
    We report time-resolved optical flux and circular polarization spectroscopy of the magnetic DA white dwarf HE 1045−0908 obtained with FORS1 at the ESO VLT. Considering published results, we estimate a likely rotational period of P rot 2.7 h, but cannot exclude values as high as about 9 h. Our detailed Zeeman tomographic analysis reveals a field structure which is dominated by a quadrupole and contains additional dipole and octupole contributions, and which does not depend strongly on the assumed value of the period. A good fit to the Zeeman flux and polarization spectra is obtained if all field components are centred and inclinations of their magnetic axes with respect to each other are allowed for. The fit can be slightly improved if an offset from the centre of the star is included. The prevailing surface field strength is 16 MG, but values between 10 and ∼ 75 MG do occur. We derive an effective photospheric temperature of HE 1045−0908 of T eff = 10 000 ± 1000 K. The tomographic code makes use of an extensive database of pre-computed Zeeman spectra (Paper I)
    corecore