428 research outputs found

    Baryon charge transfer and production asymmetry between Lambda^0 and antiLambda^0 in hadron interactions

    Full text link
    The predictions were done for asymmetry between production spectra of Lambda^0 and antiLambda^0 at the energy of LHC experiments. The value of A(s) should be situated in the band between two curves that are calculated in Quark-Gluon String Model with two possible values of intercept alpha_{SJ}(0)=0,5 and 0,9. Both curves describe the asymmetries measured at lower energies up to RHIC experiments. The data of H1 experiment can be fitted only with alpha_{SJ}(0)=0,9.Comment: LateX, 7 pages and 2 figures, poster presentation at PANIC'05, Santa Fe, October 200

    Charm Production in DPMJET

    Full text link
    In this work, charm production in the {\sc dpmjet} hadronic jet simulation is compared to experimental data. Since the major application of {\sc dpmjet} is the simulation of cosmic ray-induced air showers, the version of the code integrated in the CORSIKA simulation package has been used for the comparison. Wherever necessary, adjustments have been made to improve agreement between simulation and data. With the availability of new muon/neutrino detectors that combine a large fiducial volume with large amounts of shielding, investigation of prompt muons and neutrinos from cosmic ray interactions will be feasible for the first time. Furthermore, above 100\gtrsim 100 TeV charmed particle decay becomes the dominant background for diffuse extraterrestrial neutrino flux searches. A reliable method to simulate charm production in high-energy proton-nucleon interactions is therefore required.Comment: 10 pages, to be published in JCA

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Studying minijets via the pTp_T dependence of two-particle correlation in azimuthal angle ϕ\phi

    Full text link
    Following my previous proposal that two-particle correlation functions can be used to resolve the minijet contribution to particle production in minimum biased events of high energy hadronic interactions, I study the pTp_T and energy dependence of the correlation. Using HIJING Monte Carlo model, it is found that the correlation c(ϕ1,ϕ2)c(\phi_1,\phi_2) in azimuthal angle ϕ\phi between two particles with pT>pTcutp_T>p_T^{cut} resembles much like two back-to-back jets as pTcutp_T^{cut} increases at high colliding energies due to minijet production. It is shown that c(0,0)c(0,π)c(0,0)-c(0,\pi), which is related to the relative fraction of particles from minijets, increases with energy. The background of the correlation for fixed pTcutp_T^{cut} also grows with energy due to the increase of multiple minijet production. Application of this analysis to the study of jet quenching in ultrarelativistic heavy ion collisions is also discussed.Comment: 11 pages Latex text and 8 ps figures, LBL-3349

    Particle production azimuthal asymmetries in a clustering of color sources model

    Full text link
    The collective interactions of many partons in the first stage of the collisions is the usual accepted explanation of the sizable elliptical flow. The clustering of color sources provides a framework of partonic interactions. In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c in both the dependence of v2 transverse momentum and in the shape of the nuclear modified factor on the azimuthal angle for different centralities. We show the predictions at LHC energies for Pb-Pb. In the case of proton-proton collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics

    Inclusive Particle Spectra at RHIC

    Get PDF
    A simulation is performed of the recently reported data from PHOBOS at energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at E=17.2 A GeV. The results compare well with these early measurements at RHIC.Comment: 4 pages, 2 figure

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    Hard diffraction in hadron--hadron interactions and in photoproduction

    Get PDF
    Hard single diffractive processes are studied within the framework of the triple--Pomeron approximation. Using a Pomeron structure function motivated by Regge--theory we obtain parton distribution functions which do not obey momentum sum rule. Based on Regge-- factorization cross sections for hard diffraction are calculated. Furthermore, the model is applied to hard diffractive particle production in photoproduction and in ppˉp\bar{p} interactions.Comment: 13 pages, Latex, 13 uuencoded figure

    Monopole Percolation in the Compact Abelian Higgs Model

    Full text link
    We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that contains compact U(1) gauge fields coupled to unitary norm Higgs fields. We have determined the location of the percolation transition line in the plane (βg,βH)(\beta_g, \beta_H). This line overlaps the confined-Coulomb and the confined-Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the end-point where this phase transition line stops. In addition, we have determined the critical exponents of the monopole percolation transition away from the phase transition lines. We have performed the finite size scaling in terms of the monopole density instead of the coupling, because the density seems to be the natural parameter when dealing with percolation phenomena.Comment: 13 pages. REVTeX. 16 figs. included using eps

    Baryon stopping and hyperon enhancement in the improved dual parton model

    Get PDF
    We present an improved version of the dual parton model which contains a new realization of the diquark breaking mechanism of baryon stopping. We reproduce in this way the net baryon yield in nuclear collisions. The model, which also considers strings originating from diquark-antidiquark pairs in the nucleon sea, reproduces the observed yields of p and Lambda and their antiparticles and underestimates cascades by less than 50 %. However, Omega's are underestimated by a factor five. Agreement with data is restored by final state interaction, with an averaged cross-section as small as 0.14 mb. Hyperon yields increase significantly faster than antihyperons, in agreement with experiment.Comment: 40 pages, 18 postscript figure
    corecore