5,421 research outputs found

    HCU400: An Annotated Dataset for Exploring Aural Phenomenology Through Causal Uncertainty

    Full text link
    The way we perceive a sound depends on many aspects-- its ecological frequency, acoustic features, typicality, and most notably, its identified source. In this paper, we present the HCU400: a dataset of 402 sounds ranging from easily identifiable everyday sounds to intentionally obscured artificial ones. It aims to lower the barrier for the study of aural phenomenology as the largest available audio dataset to include an analysis of causal attribution. Each sample has been annotated with crowd-sourced descriptions, as well as familiarity, imageability, arousal, and valence ratings. We extend existing calculations of causal uncertainty, automating and generalizing them with word embeddings. Upon analysis we find that individuals will provide less polarized emotion ratings as a sound's source becomes increasingly ambiguous; individual ratings of familiarity and imageability, on the other hand, diverge as uncertainty increases despite a clear negative trend on average

    A search for electron cyclotron maser emission from compact binaries

    Full text link
    Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultra-compact binaries with orbital periods of 5.4 min and 9.6 min respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extra-solar terrestrial planets with conducting cores. If UI is present, circularly polarised radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the VLA and ATCA. In one epoch we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artifact in the data reduction process, the fact that it was detected at a significance level of 5.8 sigma and found to be transient, suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarisation to be ~50%. The inferred brightness temperature exceeds 10^18 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876.Comment: Accepted for publication MNRA

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures
    corecore