115 research outputs found

    Mechanical properties related to use of glass waste as a raw material in porcelain stoneware tile mixtures

    Get PDF
    Porcelain represents one of the most complex ceramics, formulated from a mix of clay, feldspar and quartz are sintered to conform a glass-ceramic composite. Porcelain stoneware tile has excellent technical characteristics. Nowadays, research of new materials, for example non-hazardous wastes, that are able to replace the traditional fluxing agent with out changing the process or quality of the final products has been realized. The aim of this work is to study the possibility of the use of glass powder waste, in ceramic mixtures, for manufacturing of porcelain stoneware tiles. It was prepared by mixtures containing different amount of fireclay, glass waste, feldspar and quartz. The samples were fired reaching different maximum temperatures in the range 900-12000 C, with a soaking time of 1 hour. The fired samples were characterized and the use of small amounts of glass powder in addition with feldspar and quartz showed good results of mechanical technological properties. The 10F5Q5G was the only product that can be classified as a porcelain stoneware tile due to its properties

    Measurement of Natural Radioactivity in Porcelain Stoneware Tiles

    Get PDF
    This paper presents the results of the measurement of natural radio activity present in the Porcelain stoneware tiles samples collected from the ceramic firms of Government Ceramic institute, Virudhachalam.  Natural radioactivity in the porcelain stoneware tiles samples in mainly due to 226Ra, 232Th and 40K and their daughter products.  In this study, these measurements have been estimated in Gamma-ray spectrometry and their levels for six samples are compared and also the Radium equivalent concentration (Raeq) is calculated. The gamma index is calculated and compared well with the reported values

    C-reactive protein in degenerative aortic valve stenosis

    Get PDF
    Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression

    ACE inhibition attenuates uremia-induced aortic valve thickening in a novel mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined whether impaired renal function causes thickening of the aortic valve leaflets in hyperlipidemic apoE-knockout (apoE<sup>-/-</sup>) mice, and whether the putative effect on the aortic valves could be prevented by inhibiting the angiotensin-converting enzyme (ACE) with enalapril.</p> <p>Methods</p> <p>Thickening of the aortic valve leaflets in apoE<sup>-/- </sup>mice was induced by producing mild or moderate chronic renal failure resulting from unilateral nephrectomy (1/2 NX, n = 18) or subtotal nephrectomy (5/6 NX, n = 22), respectively. Additionally, the 5/6 NX mice were randomized to no treatment (n = 8) or enalapril treatment (n = 13). The maximal thickness of each leaflet was measured from histological sections of the aortic roots.</p> <p>Results</p> <p>Leaflet thickness was significantly greater in the 5/6 NX mice than in the 1/2 NX mice (P = 0.030) or the unoperated mice (P = 0.003). The 5/6 NX mice treated with enalapril had significantly thinner leaflets than did the untreated 5/6 NX mice (P = 0.014).</p> <p>Conclusion</p> <p>Moderate uremia causes thickening of the aortic valves in apoE<sup>-/- </sup>mice, which can be attenuated by ACE inhibition. The nephrectomized apoE<sup>-/- </sup>mouse constitutes a new model for investigating the mechanisms of uremia-induced aortic valve disease, and also provides an opportunity to study its pharmacologic prevention.</p

    Regular Exercise or Changing Diet Does Not Influence Aortic Valve Disease Progression in LDLR Deficient Mice

    Get PDF
    BACKGROUND: The development and progression of calcific aortic valve disease (CAVD) shares a number of similarities with atherosclerosis. Recently we could demonstrate that regular exercise training (ET) as primary prevention prevents aortic valve disease in LDL-receptor deficient (LDLR(-/-)) mice. We aimed to investigate the impact of exercise training on the progression of CAVD in LDLR(-/-) mice in the setting of secondary prevention METHODS AND RESULTS: Sixty-four LDLR(-/-) mice were fed with high cholesterol diet to induce aortic valve sclerosis. Thereafter the animals were divided into 3 groups: group 1 continuing on high cholesterol diet, group 2 continuing with cholesterol diet plus 1 h ET per day, group 3 continuing with normal mouse chow. After another 16 weeks the animal were sacrificed. Histological analysis of the aortic valve thickness demonstrated no significant difference between the three groups (control 98.3±4.5 µm, ET 88.2±6.6 µm, change in diet 87.5±4.0). Immunohistochemical staining for endothelial cells revealed a disrupted endothelial cell layer to the same extend in all groups. Furthermore no difference between the groups was evident with respect to the expression of inflammatory, fibroblastic and osteoblastic markers. CONCLUSION: Based on the present study we have to conclude that once the development of a CAVD is initiated, exercise training or a change in diet does not have the potential to attenuate the progress of the CAVD

    TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts

    Get PDF
    Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFβ1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype

    Is there a role of statins in the prevention of aortic biological prostheses degeneration

    Get PDF
    It has been recently observed that statins might slow the progression of aortic stenosis or sclerosis. Preliminary reports suggested a similar positive effect in reducing the degeneration of aortic valve bioprostheses even though this hypothesis should be further proven and supported by new data. In this review the present evidences of the possible effects of statins in this field are discussed

    Connective tissue growth factor in tumor pathogenesis

    Get PDF
    Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood

    iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease

    Get PDF
    Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development
    corecore