155 research outputs found

    Optical properties of dense self-assembled gold nanoparticle layers with organic linker molecules

    Full text link
    Films consisting of self-assembled gold nanoparticles cross-linked with alkane-dithiols were prepared by a filtration method and studied with scanning electron microscopy to determine the structure of the films and spectrophotometry and ellipsometry to ascertain their optical properties. The structural characterization showed the existence of nanometer-sized voids within the films. This previously unmentioned feature is responsible for the previous difficulties in modelling the optical properties with effective medium models. This can be remedied, using a two-tiered hierarchical effective medium model, which takes into account the existence of the voids. Using this model we were able to fit the experimental data, with only the void volume fraction to be determined by the overall fit, while the gold volume fraction in the linker medium is fixed by the wavelength of the resonance peak. Our model should be applicable to all such films, when the deposition method, which determines the microstructure, is properly taken into account

    Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs

    Get PDF
    Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications

    Rehabilitation von Patienten mit Fazialisparese mittels dynamischer Zügelungsplastik

    No full text
    • …
    corecore