74 research outputs found
Landesque capital as an alternative to food storage in Melanesia: Irrigated taro terraces in New Georgia, Solomon Islands
In the Pacific islands, subsistence diversity made possible continuous production of food while welldeveloped exchange networks redistributed these foodstuffs as well as items within the prestige economy. All these were aspects of the ‘storage structures’ that enabled social and nutritional value to be saved, accumulated and later mobilised. In addition, there were investments in the land, landesque capital, which secured future food surpluses and so provided an alternative to food storage, in a region where the staple foods were mostly perishable, yams excepted, and food preservation was difficult. Landesque capital included such long-term improvements to productivity as terraces, mounds, irrigation channels, drainage ditches, soil structural changes and tree planting. These investments provided an effective alternative to food storage and made possible surplus production for exchange purposes. As an example, in the New Georgia group of the western Solomon Islands irrigated terraces, termed ruta, were constructed for growing the root crop taro (Colocasia esculenta). Surplus taro from ruta enabled inland groups to participate in regional exchange networks and so obtain the shell valuables that were produced by coastal groups. In this paper, we reconstruct how this exchange system worked in New Georgia using ethno-archaeological evidence, we chart its prehistoric rise and post-colonial fall, and we outline the factors that constrained its long-term expansion.Our gratitude for support during earlier fieldwork in the New Georgia group has already been expressed in previous publications. The 2014 project was supported by the Smuts Fund and Foreign Travel Fund, University of Cambridge, and by St John’s College, Cambridge.This is the accepted manuscript. The final version is available from Maney at http://dx.doi.org/10.1179/1749631414Y.000000004
Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond
Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health—Climate Risk framework
Enhanced LV endocardial border delineation with intravenous injection of Sonovue. An european multicenter study
Abstract
The safety and efficacy of SonoVue (also referred to as BR1), a new contrast agent for delineating endocardial border of the left ventricle after intravenous administration, was assessed. Two hundred and eighteen patients with suspected coronary artery disease undergoing fundamental echocardiography for the assessment of left ventricle were enrolled in a prospective multicenter, single blind, cross-over study with random sequence allocation of four different doses of SonoVue. Endocardial border definition in the apical and parasternal views was scored as 0 = not visible, 1 = barely visible, and 2 = well visualized before and after contrast enhancement. Analysis was performed by two pairs of off-site observers. Safety of SonoVue was also assessed. Results of our study indicated that the mean improvements in the endocardial border visualization score were as follows: 3.1 +/- 7.8 (95% CI, 2.5 and 3.7) for 0.5 ml, 3.4 +/- 8.0 (95% CI, 2.8 and 4.0) for 1 ml, 3.4 +/- 7.9 (95% CI, 2.8 and 4.0) for 2 ml, and 3.7 +/- 8.0 (95% CI, 3.1 and 4.3) for 4 ml (P < 0.05 for all doses from baseline). Changes from baseline in endocardial visualization scores were also seen in the apical views (P < 0.05) and they were dose-dependent (P < 0.001). Similar enhancements of endocardial visualization scores were observed in the apical views in patients with suboptimal baseline echocardiographic images. Diagnostic confidence for assigning a score and image quality also were significantly better following contrast enhancement. No significant changes in the laboratory parameters and vital signs were noted following contrast enhancement, and the side effects were minimal. It was concluded that SonoVue is safe and effective in delineating endocardial border, including in patients with suboptimal baseline images
- …