22 research outputs found
Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography
Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM) under a constant gradient of 50 K m<sup>â1</sup>, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2â3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow
A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream
Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials
Present and Future X-ray Tomographic Microscopy at TOMCAT
During its first four years of life, the TOMCAT beamline [1] at the Swiss Light Source has established itself as a stateâofâthe art hard xâray tomographic microscopy endstation for experiments on a large variety of samples, ranging from the fields of biology to materials science. It routinely performs absorption as well as phaseâcontrast imaging with an isotropic voxel size ranging from 0.360 up to 14.8 microns. Phase contrast is obtained either with simple edgeâenhancement, a modified transport of intensity approach [2] or grating interferometry [3]. Typical acquisition times are on the order of a few minutes, depending on energy and resolution. A recently implemented automatic sample exchanger is now available for highâthroughput studies [4]. In addition to further developments in phaseâcontrast imaging, current scientific activities at the beamline focus on pushing spatial and temporal resolution by a few orders of magnitude, aiming at nanoâ [5] and ârealâtimeâ [6] tomography
Early tumor development captured through nondestructive, high resolution differential phase contrast X-ray imaging
Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities
3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream
The microstructure of food is key to its sensorial perception, and methods to characterize the microstructure are of crucial importance in food engineering. Ice cream is a special example whose microstructure changes dramatically in response to temperature variations. Since ice cream is a multiphase material, the complex interactions among the phases and the physical mechanisms that drive the evolution of microstructure are not yet well understood. This is mostly due to the fact that observing the microstructure with traditional microscopic methods is destructive and does not allow the study of undisturbed samples. With X-ray micro-tomography, it is possible to overcome these limitations and carry out time lapse studies of the evolution of the microstructure of ice cream. Using iodine as a contrast agent, we measured the three-dimensional distribution of the three main phases (air, unfrozen sugar solution, and ice crystals) with a voxel size of 6 ÎŒm. An automated routine was developed that allows for the segmentation of the three phases. Based on the three-dimensional data we calculated the temporal evolution of air bubble sizes and ice crystal sizes during cyclic variations of temperature. Under the given temperature variations we find strong hints that for ice crystal coarsening a melt refreeze mechanism and for air microstructure coarsening coalescence are the dominating underlying mechanisms. This methodâwhich can be applied to a plethora of soft multiphase materialsâprovides new insights into the coarsening mechanisms of multiphase materials and could contribute to a better understanding of complex materials
Can we develop an early warning system for patients after cell transplantation therapy using X-ray imaging?
Over the last decades, several new therapeutic concepts which include the transplantation of cells have been developed for diseases of the central nervous system (CNS). The migration of implanted cells away from the intended transplantation site as well as tumour formation from unchecked cell proliferation are potential risks of such therapeutic approaches. In order to follow cell migration and possibly proliferation we have developed a technique that allows detection and tracking of implanted cells which have been marked with gold nanoparticles (GNPs) prior to implantation into the host organism. The GNP-loaded cells provide sufficient contrast to be detected with synchrotron X-ray imaging methods. Very small cell clusters and even individual cells can be detected. The price for the high spatial resolution is the exposure of implanted cells and host organism to comparably high radiation doses during the imaging procedures. Therefore, before advocating use of the technique to follow up larger series of transplantation experiments in small animal models of CNS disease it is absolutely mandatory to obtain experimental evidence regarding the threshold X-ray dose above which single or repeated imaging would interfere with the functionality of GNP-loaded cells. Only once this question has been answered should the possibility to develop this method towards clinical application be considered
Imaging brain amyloid deposition using grating-based differential phase contrast tomography
One of the core pathological features of Alzheimer's disease (AD) is the accumulation of amyloid plaques in the brain. Current efforts of medical imaging research aim at visualizing amyloid plaques in living patients in order to evaluate the progression of the pathology, but also to facilitate the diagnosis of AD at the prodromal stage. In this study, we evaluated the capabilities of a new experimental imaging setup to image amyloid plaques in the brain of a transgenic mouse model of Alzheimer's disease. This imaging setup relies on a grating interferometer at a synchrotron X-ray source to measure the differential phase contrast between brain tissue and amyloid plaques. It provides high-resolution images with a large field of view, making it possible to scan an entire mouse brain. Here, we showed that this setup yields sufficient contrast to detect amyloid plaques and to quantify automatically several important structural parameters, such as their size and their regional density in 3D, on the scale of a whole mouse brain. Whilst future developments are required to apply this technique in vivo, this grating-based setup already gives the possibility to perform powerful studies aiming at quantifying the amyloid pathology in mouse models of AD and might accelerate the evaluation of anti-amyloid compounds. In addition, this technique may also facilitate the development of other amyloid imaging methods such as positron emission tomography (PET) by providing convenient high-resolution 3D data of the plaque distribution for multimodal comparison
Towards x-ray differential phase contrast imaging on a compact setup
A new imaging setup, aimed to perform differential X-ray phase contrast (DPC) imaging with a Talbot interferometer on a microfocus X-ray tube, is demonstrated. The main features compared to recently proposed setups are an extremely short source to detector distance, high spatial resolution and a large field of view. The setup is designed for an immediate integration into a industrial micro CT scanner. In this paper, technical challenges of a compact setup, namely the critical source coherence and divergence, are discussed. A theoretical analysis using wave optics based computer simulations is performed to estimate the DPC signal visibility and the size of the field of view for a given setup geometry. The maximization of the signal visibility as a function of the inter-grating distance yields the optimal grating parameters. Imaging results using the optimized grating parameters are presented. The reduction of the field of view, being a consequence of the high beam divergence, was solved by fabricating new, cylindrically bent diffraction gratings. The fabrication process of these gratings required a change of the currently used wafer materials and an adaption of the manufacturing techniques. The implementation of the new setup represents a major step forward for the industrial application of the DPC technique