458,832 research outputs found

    Markov modeling of moving target defense games

    Get PDF
    We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies

    Kaon Condensation and Dynamical Nucleons in Neutron Stars

    Get PDF
    We discuss the nature of the kaon condensation phase transition. We find several features which, if kaons condense in neutron stars, are not only remarkable, but must surely effect such properties as superfluidity and transport properties, which in turn are relevant to the glitch phenomenon and cooling rates of neutron stars. The mixed phase, because of the extensive pressure range that it spans, will occupy a broad radial extent in a neutron star. This region is permeated with microscopic drops (and other configurations) located at lattice sites of one phase immersed in the background of the other phase. The electric charge on drops is opposite to that of the background phase {\sl and} nucleons have a mass approximately a factor two different depending on whether they are in the drops or the background phase. A large part of the stellar interior has this highly non-homogeneous structure.Comment: 5 pages, 6 figures, revtex. Physical Review Letters (accepted

    Optically Pumped NMR Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factor nu=1/3

    Full text link
    The Knight shift of Ga-71 nuclei is measured in two different electron-doped multiple quantum well samples using optically pumped NMR. These data are the first direct measurements of the electron spin polarization, P(nu,T)=/max, near nu=1/3. The P(T) data at nu=1/3 probe the neutral spin-flip excitations of a fractional quantum Hall ferromagnet. In addition, the saturated P(nu) drops on either side of nu=1/3, even in a Btot=12 Tesla field. The observed depolarization is quite small, consistent with an average of about 0.1 spin-flips per quasihole (or quasiparticle), a value which does not appear to be explicable by the current theoretical understanding of the FQHE near nu=1/3.Comment: 4 pages (REVTEX), 5 eps figures embedded in text; minor changes, published versio

    Parametric instabilities in magnetized multicomponent plasmas

    Full text link
    This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The excitation is provided by parametrically pumping the magnetic field. Here two ion-like species are allowed to be fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary. Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves. We firstly investigate the pump wave in detail, in the case where the background magnetic field is perpendicular to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14 pages, 8 figure

    Complex temperatures zeroes of partition function in spin-glass models

    Full text link
    An approximate method is proposed for investigating complex-temperature properties of real-dimensional spin-glass models. The method uses the complex-temperature data of the ferromagnetic model on the same lattice. The universality line in the complex-temperature space is obtained.Comment: latex, corrected some misprint

    What about a beta-beam facility for low energy neutrinos?

    Full text link
    A novel method to produce neutrino beams has recently been proposed : the beta-beams. This method consists in using the beta-decay of boosted radioactive nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose to exploit the beta-beam concept to produce neutrino beams of low energy. We discuss the applications of such a facility as well as its importance for different domains of physics. We focus, in particular, on neutrino-nucleus interaction studies of interest for various open issues in astrophysics, nuclear and particle physics. We suggest possible sites for a low energy beta-beam facility.Comment: 4 pages, 1 figur

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    Investigations of Ra+^+ properties to test possibilities of new optical frequency standards

    Full text link
    The present work tests the suitability of the narrow transitions $7s \ ^2S_{1/2} \to 6d ^2D_{3/2}and and 7s ^2S_{1/2} \to 6d ^2D_{5/2}inRa in Ra^+foropticalfrequencystandardstudies.Ourcalculationsofthelifetimesofthemetastable for optical frequency standard studies. Our calculations of the lifetimes of the metastable 6dstatesusingtherelativisticcoupledclustertheorysuggestthattheyaresufficientlylongforRa states using the relativistic coupled-cluster theory suggest that they are sufficiently long for Ra^+$ to be considered as a potential candidate for an atomic clock. This is further corroborated by our studies of the hyperfine interactions, dipole and quadrupole polarizabilities and quadrupole moments of the appropriate states of this system.Comment: Latex files, 5 pages, 1 figur

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature

    Magnetic and electron transport properties of the rare-earth cobaltates, La0.7-xLnxCa0.3CoO3 (Ln = Pr, Nd, Gd and Dy) : A case of phase separation

    Full text link
    Magnetic and electrical properties of four series of rare earth cobaltates of the formula La0.7-xLnxCa0.3CoO3 with Ln = Pr, Nd, Gd and Dy have been investigated. Compositions close to x = 0.0 contain large ferromagnetic clusters or domains, and show Brillouin-like behaviour of the field-cooled DC magnetization data with fairly high ferromagnetic Tc values, besides low electrical resistivities with near-zero temperature coefficients. The zero-field-cooled data generally show a non-monotonic behaviour with a peak at a temperatures slightly lower than Tc. The near x = 0.0 compositions show a prominent peak corresponding to the Tc in the AC-susceptibility data. The ferromagnetic Tc varies linearly with x or the average radius of the A-site cations, (rA). With increase in x or decrease in (rA), the magnetization value at any given temperature decreases markedly and the AC-susceptibility measurements show a prominent transition arising from small magnetic clusters with some characteristics of a spin-glass. Electrical resistivity increases with increase in x, showed a significant increase around a critical value of x or (rA), at which composition the small clusters also begin to dominate. These properties can be understood in terms of a phase separation scenario wherein large magnetic clusters give way to smaller ones with increase in x, with both types of clusters being present in certain compositions. The changes in magnetic and electrical properties occur parallely since the large ferromagnetic clusters are hole-rich and the small clusters are hole-poor. Variable-range hopping seems to occur at low temperatures in these cobaltates.Comment: 23 pages including figure
    corecore