3,180 research outputs found
Thermodynamics of Bose-Condensed Atomic Hydrogen
We study the thermodynamics of the Bose-condensed atomic hydrogen confined in
the Ioffe-Pritchard potential. Such a trapping potential, that models the
magnetic trap used in recent experiments with hydrogen, is anharmonic and
strongly anisotropic. We calculate the ground-state properties, the condensed
and non-condensed fraction and the Bose-Einstein transition temperature. The
thermodynamics of the system is strongly affected by the anharmonicity of this
external trap. Finally, we consider the possibility to detect Josephson-like
currents by creating a double-well barrier with a laser beam.Comment: 11 pages, 4 figures, to be published in European Physical Journal
Thermodynamics of a trapped Bose condensate with negative scattering length
We study the Bose-Einstein condensation (BEC) for a system of atoms,
which have negative scattering length (attractive interaction), confined in a
harmonic potential. Within the Bogoliubov and Popov approximations, we
numerically calculate the density profile for both condensate and
non-condensate fractions and the spectrum of elementary excitations. In
particular, we analyze the temperature and number-of-boson dependence of these
quantities and evaluate the BEC transition temperature . We calculate
the loss rate for inelastic two- and three-body collisions. We find that the
total loss rate is strongly dependent on the density profile of the condensate,
but this density profile does not appreciably change by increasing the thermal
fraction. Moreover, we study, using the quasi-classical Popov approximation,
the temperature dependence of the critical number of condensed bosons,
for which there is the collapse of the condensate. There are different regimes
as a function of the total number of atoms. For the condensate is
always metastable but for the condensate is metastable only for
temperatures that exceed a critical value .Comment: RevTex, 7 postscript figures, to be published in Journal of Low
Temperature Phsyic
Thermodynamics of Multi-Component Fermi Vapors
We study the thermodynamical properties of Fermi vapors confined in a
harmonic external potential. In the case of the ideal Fermi gas, we compare
exact density profiles with their semiclassical approximation in the conditions
of recent experiments. Then, we consider the phase-separation of a
multi-component Fermi vapor. In particular, we analyze the phase-separation as
a function of temperature, number of particles and scattering length. Finally,
we discuss the effect of rotation on the stability and thermodynamics of the
trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a
Special Issue Articl
The PEP Survey: Infrared Properties of Radio-Selected AGN
By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the
Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from
VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable
redshift estimate, and sub-divided them into star-forming galaxies and AGN
solely on the basis of their radio luminosity. The AGN sample is complete with
respect to radio selection at all z<~3.5. 832 radio sources have a counterpart
in the PEP catalogue. 175 are AGN. Their redshift distribution closely
resembles that of the total radio-selected AGN population, and exhibits two
marked peaks at z~0.9 and z~2.5. We find that the probability for a
radio-selected AGN to be detected at FIR wavelengths is both a function of
radio power and redshift, whereby powerful sources are more likely to be FIR
emitters at earlier epochs. This is due to two distinct effects: 1) at all
radio luminosities, FIR activity monotonically increases with look-back time
and 2) radio activity of AGN origin is increasingly less effective at
inhibiting FIR emission. Radio-selected AGN with FIR emission are
preferentially located in galaxies which are smaller than those hosting
FIR-inactive sources. Furthermore, at all z<~2, there seems to be a
preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the
chances for FIR emission. We find such FIR (and MIR) emission to be due to
processes indistinguishable from those which power star-forming galaxies. It
follows that radio emission in at least 35% of the entire AGN population is the
sum of two contributions: AGN accretion and star-forming processes within the
host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA
A 12um ISOCAM Survey of the ESO-Sculptor Field: Data Reduction and Analysis
We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM
open time observation performed on the ESO-Sculptor Survey field (Arnouts et
al. 1997). A complete catalogue of 142 sources (120 galaxies and 22 stars),
detected with high significance (equivalent to 5sigma), is presented above an
integrated flux density of 0.24mJy. Star/galaxy separation is performed by a
detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and
below this flux density the incompleteness is corrected using two independent
methods. The first method uses stars and the second uses optical counterparts
of the ISOCAM galaxies; these methods yield consistent results. We also apply
an empirical flux density calibration using stars in the field. For each star,
the 12um flux density is derived by fitting optical colours from a multi-band
chi^2 to stellar templates (BaSel-2.0) and using empirical optical-IR
colour-colour relations. This article is a companion analysis to
Rocca-Volmerange 2007 et al. where the 12um faint galaxy counts are presented
and analysed by galaxy type with the evolutionary code PEGASE.3.Comment: 12 pages, 7 figures, figure 1 modified from journal version for size,
accepted for publication in A&A, includes psfig.st
Realization of quantum walks with negligible decoherence in waveguide lattices
Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems (similar to 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects
UVB radiation induced effects on cells studied by FTIR spectroscopy
We have made a preliminary analysis of the results about the eVects on
tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose
of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we
have used two techniques: Fourier transform infrared spectroscopy (FTIR) and
flow cytometry. FTIR spectroscopy has the potential to provide the
identiWcation of the vibrational modes of some of the major compounds (lipid,
proteins and nucleic acids) without being invasive in the biomaterials. The
second technique has allowed us to perform measurements of cytotoxicity and to
assess the percentage of apoptosis. We already studied the induction of
apoptotic process in the same cell line by UVB radiation; in particular, we
looked for correspondences and correlations between FTIR spetroscopy and flow
cytometry data finding three highly probable spectroscopic markers of apoptosis
(Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the
results have shown significant changes in the absorbance and spectral pattern
in the wavenumber protein and nucleic acids regions after the treatments
Ideal Quantum Gases in D-dimensional Space and Power-law Potentials
We investigate ideal quantum gases in D-dimensional space and confined in a
generic external potential by using the semiclassical approximation. In
particular, we derive density of states, density profiles and critical
temperatures for Fermions and Bosons trapped in isotropic power-law potentials.
Form such results, one can easily obtain those of quantum gases in a rigid box
and in a harmonic trap. Finally, we show that the Bose-Einstein condensation
can set up in a confining power-law potential if and only if ,
where is the space dimension and is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic
Opsonic and Protective Properties of Antibodies Raised to Conjugate Vaccines Targeting Six Staphylococcus aureus Antigens
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP) of serotype 5 (CP5) or 8 (CP8) and/or a second antigen, a β-(1→6)-polymer of N-acetyl-D-glucosamine (PNAG). Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA), but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH2, in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH2 conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L), CP5 conjugated to clumping factor B (ClfB), or CP8 conjugated to iron-surface determinant B (IsdB) were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH2 to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens
Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky
Survey with individual detections in the Far-Infrared Herschel PACS bands (100
or 160 m) and in the GALEX Far-UltraViolet band up to z0.4 in the
COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4
morphological types. For the star forming and unclassifiable galaxies we
calculate dust extinctions from the UV slope, the H/H ratio and
the ratio. There is a tight correlation between the
dust extinction and both and metallicity. We calculate
SFR and compare it with other SFR estimates (H, UV, SDSS)
finding a very good agreement between them with smaller dispersions than
typical SFR uncertainties. We study the effect of mass and metallicity, finding
that it is only significant at high masses for SFR. For the AGN and
composite galaxies we find a tight correlation between SFR and L
(0.29), while the dispersion in the SFR - L relation is
larger (0.57). The galaxies follow the prescriptions of the
Fundamental Plane in the M-Z-SFR space.Comment: 24 pages, 23 figures, accepted for publication in MNRA
- …
