7,086 research outputs found
Inversionless gain in a three-level system driven by a strong field and collisions
Inversionless gain in a three-level system driven by a strong external field
and by collisions with a buffer gas is investigated. The mechanism of
populating of the upper laser level contributed by the collision transfer as
well as by relaxation caused by a buffer gas is discussed in detail. Explicit
formulae for analysis of optimal conditions are derived. The mechanism
developed here for the incoherent pump could be generalized to other systems.Comment: RevTeX, 9 pages, 4 eps figure
Optical spectra, crystal-field parameters, and magnetic susceptibility of the new multiferroic NdFe3(BO3)4
We report high-resolution optical absorption spectra for NdFe3(BO3)4 trigonal
single crystal which is known to exhibit a giant magnetoelectric effect below
the temperature of magnetic ordering TN = 33 K. The analysis of the
temperature-dependent polarized spectra reveals the energies and, in some
cases, symmetries and exchange splittings of Nd3+ 84 Kramers doublets. We
perform crystal-field calculations starting from the exchange-charge model,
obtain a set of six real crystal-field parameters, and calculate wave functions
and magnetic g-factors. In particular, the values g(perpendicular) = 2.385,
g(parallel) = 1.376 were found for the Nd3+ ground-state doublet. We obtain
Bloc=7.88 T and |JFN|= 0.48 K for the values of the local effective magnetic
field at liquid helium temperatures at the Nd3+ site and the Nd - Fe exchange
integral, respectively, using the experimentally measured Nd3+ ground-state
splitting of 8.8 cm-1. To check reliability of our set of crystal field
parameters we model the magnetic susceptibility data from literature. A dimer
containing two nearest-neighbor iron ions in the spiral chain is considered to
partly account for quasi-one-dimensional properties of iron borates, and then
the mean-field approximation is used. The results of calculations with the
exchange parameters for Fe3+ ions Jnn = -6.25 K (intra-chain interactions) and
Jnnn = -1.92 K (inter-chain interactions) obtained from fitting agree well with
the experimental data.Comment: 13 pages, 8 figures, 2 table
Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype
Abstract Background Recent studies have indicated the presence of multipotent mesenchymal stromal cells (MSCs) in human lung diseases. Excess airway smooth muscle, myofibroblasts and activated fibroblasts have each been noted in asthma, suggesting that mesenchymal progenitor cells play a role in asthma pathogenesis. We therefore sought to determine whether MSCs are present in the lungs of ovalbumin (OVA)-sensitized and challenged mice, a model of allergic airways disease. Methods Balb/c mice were sensitized and challenged with PBS or OVA over a 25 day period. Flow cytometry as well as colony forming and differentiation potential were used to analyze the emergence of MSCs along with gene expression studies using immunochemical analyses, quantitative polymerase chain reaction (qPCR), and gene expression beadchips. Results A CD45-negative subset of cells expressed Stro-1, Sca-1, CD73 and CD105. Selection for these markers and negative selection against CD45 yielded a population of cells capable of adipogenic, osteogenic and chondrogenic differentiation. Lungs from OVA-treated mice demonstrated a greater average colony forming unit-fibroblast (CFU-F) than control mice. Sorted cells differed from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical to bone marrow-derived sorted cells. Finally, cells isolated from the bronchoalveolar lavage of a human asthma patient showed identical patterns of cell surface markers and differentiation potential. Conclusions In summary, allergen sensitization and challenge is accompanied by an increase of MSCs resident in the lungs that may regulate inflammatory and fibrotic responses.http://deepblue.lib.umich.edu/bitstream/2027.42/78265/1/1465-9921-11-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/2/1465-9921-11-127.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/3/1465-9921-11-127-S1.DOCPeer Reviewe
Study of Scintillator Strip with Wavelength Shifting Fiber and Silicon Photomultiplier
The performance of the cm plastic scintillator
strip with wavelength shifting fiber read-out by two novel photodetectors
called Silicon PhotoMultipliers (SiPMs) is discussed. The advantages of SiPM
relative to the traditional multichannel photomultiplier are shown. Light yield
and light attenuation measurements are presented. This technique can be used in
muon or calorimeter systems.Comment: 9 pages, 5 figure
Towards Emotion Recognition: A Persistent Entropy Application
Emotion recognition and classification is a very active area of research. In
this paper, we present a first approach to emotion classification using
persistent entropy and support vector machines. A topology-based model is
applied to obtain a single real number from each raw signal. These data are
used as input of a support vector machine to classify signals into 8 different
emotions (calm, happy, sad, angry, fearful, disgust and surprised)
Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?
We report high resolution polarized infrared studies of the quarter-filled
spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <=
300K). Numerous new modes were detected below the temperature T_c=34K of the
phase transition into a charge ordered nonmagnetic state accompanied by a
lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice
dimerization at T_c and show that some peculiarities of the low-temperature
vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2,
1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as
magnetic bound states and propose the alternative interpretation as folded
phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure
Analysis of signalling pathways using continuous time Markov chains
We describe a quantitative modelling and analysis approach for signal transduction networks.
We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable
Folded modes in the infrared spectra of the spin-Peierls phase of CuGeO_3
Polarized far-infrared transmittance spectra of CuGeO_3 single crystals were
measured at different temperatures (6K < T < 300K). Two spectral lines, at
284.2 cm-1 in E||c polarization and at 311.7 cm-1 in E||b polarization, appear
at the temperature of the spin-Peierls transition and grow in intensity with
decreasing temperature. Both of them are, most probably, folded modes of the
dimerized lattice. We discuss a possible role of the spin-phonon interaction in
the formation of the 311.7 cm-1 feature.Comment: 4 pages, 5 figures, 1 table; Submitted to Phys.Rev.B Second revision.
Figures and text were slightly change
- …
