1,219 research outputs found
Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15
We discuss implications of a strong flare event observed in the Seyfert
galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic
reconnection. We conduct detailed radiative transfer modeling of the
reprocessed radiation for a primary source that is elevated above the disk. The
model includes relativistic effects and Keplerian motion around the black hole.
We show that for such a model setup the observed time-modulation must be
intrinsic to the primary source. Using a simple analytical model we then
investigate time delays between hard and soft X-rays during the flare. The
model considers an intrinsic delay between primary and reprocessed radiation,
which measures the geometrical distance of the flare source to the reprocessing
sites. The observed time delays are well reproduced if one assumes that the
reprocessing happens in magnetically confined, cold clouds.Comment: 4 pages, 2 figures, proceedings of a talk given at the symposium 238
at the IAU General Assembly 200
The evolution of the disc variability along the hard state of the black hole transient GX 339-4
We report on the analysis of hard-state power spectral density function (PSD)
of GX 339-4 down to the soft X-ray band, where the disc significantly
contributes to the total emission. At any luminosity probed, the disc in the
hard state is intrinsically more variable than in the soft state. However, the
fast decrease of disc variability as a function of luminosity, combined with
the increase of disc intensity, causes a net drop of fractional variability at
high luminosities and low energies, which reminds the well-known behaviour of
disc-dominated energy bands in the soft state. The peak-frequency of the
high-frequency Lorentzian (likely corresponding to the high-frequency break
seen in active galactic nuclei, AGN) scales with luminosity, but we do not find
evidence for a linear scaling. In addition, we observe that this characteristic
frequency is energy-dependent. We find that the normalization of the PSD at the
peak of the high-frequency Lorentzian decreases with luminosity at all
energies, though in the soft band this trend is steeper. Together with the
frequency shift, this yields quasi-constant high frequency (5-20 Hz) fractional
rms at high energies, with less than 10 percent scatter. This reinforces
previous claims suggesting that the high frequency PSD solely scales with BH
mass. On the other hand, this constancy breaks down in the soft band (where the
scatter increases to ~30 percent). This is a consequence of the additional
contribution from the disc component, and resembles the behaviour of optical
variability in AGN.Comment: 12 pages, 8 figures, accepted for publication in MNRA
Tracing the reverberation lag in the hard state of black hole X-ray binaries
We report results obtained from a systematic analysis of X-ray lags in a
sample of black hole X-ray binaries, with the aim of assessing the presence of
reverberation lags and studying their evolution during outburst. We used
XMM-Newton and simultaneous RXTE observations to obtain broad-band energy
coverage of both the disc and the hard X-ray Comptonization components. In most
cases the detection of reverberation lags is hampered by low levels of
variability signal-to-noise ratio (e.g. typically when the source is in a soft
state) and/or short exposure times. The most detailed study was possible for GX
339-4 in the hard state, which allowed us to characterize the evolution of
X-ray lags as a function of luminosity in a single source. Over all the sampled
frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law
component, already well-known from previous RXTE studies. The XMM-Newton soft
X-ray response allows us to detail the disc variability. At low-frequencies
(long time scales) the disc component always leads the power law component. On
the other hand, a soft reverberation lag (ascribable to thermal reprocessing)
is always detected at high-frequencies (short time scales). The intrinsic
amplitude of the reverberation lag decreases as the source luminosity and the
disc-fraction increase. This suggests that the distance between the X-ray
source and the region of the optically-thick disc where reprocessing occurs,
gradually decreases as GX 339-4 rises in luminosity through the hard state,
possibly as a consequence of reduced disc truncation.Comment: 15 pages, 9 figures, 2 tables, accepted for publication in Ap
Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares
Using Monte-Carlo simulations of X-ray flare distributions across the
accretion disk of active galactic nuclei (AGN), we obtain modeling results for
the energy-dependent fractional variability amplitude. Referring to previous
results of this model, we illustrate the relation between the shape of the
point-to-point fractional variability spectrum, F_pp, and the time-integrated
spectral energy distribution, F_E. The results confirm that the spectral shape
and variability of the iron Kalpha line are dominated by the flares closest to
the disk center.Comment: 2 pages, 1 figure, conference proceedings of the AGN meeting held in
October 2006 in Xi'an, China. To appear in "The Central Engine of Active
Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP
The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre
We report on a detailed study of the spectral and temporal properties of the
neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr
away from Sgr A. The system is expected to have a short orbital period, even
within the ultra-compact regime, given its persistent nature at low X-ray
luminosities and the long duration thermonuclear burst that it has displayed.
We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks)
observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in
the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra
are well described by a relatively cool (kTbb = 0.5 keV) black body component
plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are
consistent with the source being in a faint hard state, as confirmed by the ~
20 per cent fractional root mean square amplitude of the fast variability (0.1
- 7 Hz) inferred from the XMM-Newton data. The electron temperature of the
corona is >7 keV for the Suzaku observation, but it is measured to be as low as
~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower
than expected for systems in the hard state. We searched for X-ray pulsations
and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7
Hz). Finally, we investigated the origin of the low frequency variability
emission present in the XMM-Newton data and ruled out an absorption dip origin.
This constraint the orbital inclination of the system to 65 degr unless the
orbital period is longer than 11 hr (i.e. the length of the XMM-Newton
observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA
Constraining global parameters of accreting black holes by modeling magnetic flares
We present modeling results for the reprocessed radiation expected from
magnetic flares above AGN accretion disks. Relativistic corrections for the
orbital motion of the flare and for the curved space-time in the vicinity of
the black hole are taken into account. We investigate the local emission
spectra, as seen in a frame co-orbiting with the disk, and the observed spectra
at infinity. We investigate long-term flares at different orbital phases and
short-term flares for various global parameters of the accreting black hole.
Particular emphasis is put on the relation between the iron Kalpha line and the
Compton hump as these two features can be simultaneously observed by the Suzaku
satellite and later by Simbol-X.Comment: 4 pages, 1 figure, 1 table, proceedings for a poster at the
international conference "The Extreme Universe in the Suzaku Era" held in
Kyoto, Japan, December 4-8, 200
Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst
We report on the evolution of the X-ray emission of the accreting neutron
star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent
outburst in 2015-2017. We detected 60 absorption lines during the soft state
(of which 21 at more than 3 ), that disappeared in the hard state
(e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely
part of the accretion disc atmosphere. The bulk of the absorption features can
be reproduced by a high column density () of highly
ionised () plasma. Its disappearance during the
hard state is likely the consequence of a thermal photo-ionisation instability.
MXB 1659-298's continuum emission can be described by the sum of an absorbed
disk black body and its Comptonised emission, plus a black body component. The
observed spectral evolution with state is in line with that typically observed
in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe
K disk-line is required during the soft state. We also tentatively
detect the Fe xxii doublet, whose ratio suggests an electron density of the
absorber of , hence, the absorber is likely located at
from the illuminating source, well inside the Compton and
outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB
showcasing intense Fe xxv and Fe xxvi absorption during the soft state that
disappears during the hard state.Comment: MNRAS in pres
- âŠ