140 research outputs found

    Phonons and Magnetic Excitations in Mott-Insulator LaTiO3_3

    Full text link
    The polarized Raman spectra of stoichiometric LaTiO3_3 (TN=150_N = 150 K) were measured between 6 and 300 K. In contrast to earlier report on half-metallic LaTiO3.02_{3.02}, neither strong background scattering, nor Fano shape of the Raman lines was observed. The high frequency phonon line at 655 cm1^{-1} exhibits anomalous softening below TN_N: a signature for structural rearrangement. The assignment of the Raman lines was done by comparison to the calculations of lattice dynamics and the nature of structural changes upon magnetic ordering are discussed. The broad Raman band, which appears in the antiferromagnetic phase, is assigned to two-magnon scattering. The estimated superexchange constant J=15.4±0.5J = 15.4\pm0.5 meV is in excellent agreement with the result of neutron scattering studies.Comment: 4 pages, 5 figure

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure

    Self-trapped Exciton and Franck-Condon Spectra Predicted in LaMnO3_3

    Full text link
    Because the ground state has cooperative Jahn-Teller order, electronic excitations in LaMnO3_3 are predicted to self-trap by local rearrangement of the lattice. The optical spectrum should show a Franck-Condon series, that is, a Gaussian envelope of vibrational sidebands. Existing data are reinterpreted in this way. The Raman spectrum is predicted to have strong multiphonon features.Comment: 5 pages with two embedded postscript figure

    Magnetic Field Effects on the Far-Infrared Absorption in Mn_12-acetate

    Full text link
    We report the far-infrared spectra of the molecular nanomagnet Mn_12-acetate (Mn_12) as a function of temperature (5-300 K) and magnetic field (0-17 T). The large number of observed vibrational modes is related to the low symmetry of the molecule, and they are grouped together in clusters. Analysis of the mode character based on molecular dynamics simulations and model compound studies shows that all vibrations are complex; motion from a majority of atoms in the molecule contribute to most modes. Three features involving intramolecular vibrations of the Mn_12 molecule centered at 284, 306 and 409 cm-1 show changes with applied magnetic field. The structure near 284 cm1^{-1} displays the largest deviation with field and is mainly intensity related. A comparison between the temperature dependent absorption difference spectra, the gradual low-temperature cluster framework distortion as assessed by neutron diffraction data, and field dependent absorption difference spectra suggests that this mode may involve Mn motion in the crown.Comment: 5 pages, 4 figures, PRB accepte

    Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    Get PDF
    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam

    Franck-Condon-Broadened Angle-Resolved Photoemission Spectra Predicted in LaMnO3

    Full text link
    The sudden photohole of least energy created in the photoemission process is a vibrationally excited state of a small polaron. Therefore the photoemission spectrum in LaMnO3 is predicted to have multiple Franck-Condon vibrational sidebands. This generates an intrinsic line broadening approximately 0.5 eV. The photoemission spectral function has two peaks whose central energies disperse with band width approximately 1.2 eV. Signatures of these phenomena are predicted to appear in angle-resolved photoemission spectra.Comment: Revtex file 4 pages and 3 figure

    rf cavity point charge wakefield computation through a hybrid analytical and numerical approach

    Get PDF
    We study short range geometric wakefields of a normal conducting third harmonic cavity, developed by ALBA, which is currently under investigation for the BESSY II main storage ring upgrade. As is commonly done to enhance the shunt impedance, the single cell cavity shape includes smooth nose cone transitions to the outside beam pipe, which significantly affects the wakefields. Utilizing the general approach developed by the earlier work, a model of point charge wakefield for cavities of this type is suggested. The wakefield model consists of two parts the singular part, inherently difficult for numerical codes, is found analytically, and the nonsingular part, which could be retrieved from relatively nondemanding numerical wakefield computations. Based on this hybrid approach, the wakefields due to arbitrary short bunches can be readily obtained both efficiently and accurately. The model was cross checked against direct numerical simulations and a good agreement was found within the entire range of bunch lengths relevant to potential applications, from sub millimeter down to 1 amp; 956;m rms. We also observed that the wakefield model of a single cavity applies equally well to a small number of coupled cavities after some straightforward parameter scalin

    Strain effect on electronic transport and ferromagnetic transition temperature in La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films

    Full text link
    We report on a systematic study of strain effects on the transport properties and the ferromagnetic transition temperature TcT_{c} of high-quality La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films epitaxially grown on (100) SrTiO3_{3} substrates. Both the magnetization and the resistivity are critically dependent on the film thickness. TcT_{c} is enhanced with decreasing the film thickness due to the compressive stain produced by lattice mismatch. The resistivity above 165 K of the films with various thicknesses is consistent with small polaronic hopping conductivity. The polaronic formation energy EPE_{P} is reduced with the decrease of film thickness. We found that the strain dependence of TcT_{c} mainly results from the strain-induced electron-phonon coupling. The strain effect on EPE_{P} is in good agreement with the theoretical predictions.Comment: 6 pages and 5 figures, accepted for publication in Phys. Rev.

    Multi-phonon Resonant Raman Scattering Predicted in LaMnO3 from the Franck-Condon Process via Self-Trapped Excitons

    Full text link
    Resonant behavior of the Raman process is predicted when the laser frequency is close to the orbital excitation energy of LaMnO3 at 2 eV. The incident photon creates a vibrationally excited self-trapped ``orbiton'' state from the orbitally-ordered Jahn-Teller (JT) ground state. Trapping occurs by local oxygen rearrangement. Then the Franck-Condon mechanism activates multiphonon Raman scattering. The amplitude of the nn-phonon process is first order in the electron-phonon coupling gg. The resonance occurs {\it via} a dipole forbidden dd to dd transition. We previously suggested that this transition (also seen in optical reflectivity) becomes allowed because of asymmetric oxygen fluctuations. Here we calculate the magnitude of the corresponding matrix element using local spin-density functional theory. This calculation agrees to better than a factor of two with our previous value extracted from experiment. This allows us to calculate the absolute value of the Raman tensor for multiphonon scattering. Observation of this effect would be a direct confirmation of the importance of the JT electron-phonon term and the presence of self-trapped orbital excitons, or ``orbitons''.Comment: 8 pages and 3 embedded figures. The earlier short version is now replaced by a more complete paper with a slightly different title. This version includes a caculation by density-functional theory of the dipole matrix element for exciting the self-trapped orbital exciton which activates the multiphonon Raman signal
    corecore