1,404 research outputs found
Magnetic-field-induced Stoner transition in a dilute quantum Hall system
In a recent paper [Phys.Rev.B.\textbf{84}, 161307 (2011)], experimental data
on spin splitting in the integer quantum Hall effect has been reported in a
high mobility dilute 2D electron gas with electron density as low as 0.2
10 cm . In this work, we show that an excellent
\emph{quantitative} description of these data can be obtained within the model
of the magnetic-field-induced Stoner transition in the quantum Hall regime.
This provides a powerful tool to probe the non-trivial density dependance of
electron-electron interactions in the dilute regime of the 2D electron gas
Critical point for the CAF-F phase transition at charge neutrality in bilayer graphene
We report on magneto-transport measurements up to 30 T performed on a bilayer
graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our
high mobility sample exhibits an insulating state at neutrality point which
evolves into a metallic phase when a strong in-plane field is applied, as
expected for a transition from a canted antiferromagnetic to a ferromagnetic
spin ordered phase. For the first time we individuate a temperature-independent
crossing in the four-terminal resistance as a function of the total magnetic
field, corresponding to the critical point of the transition. We show that the
critical field scales linearly with the perpendicular component of the field,
as expected from the underlying competition between the Zeeman energy and
interaction-induced anisotropies. A clear scaling of the resistance is also
found and an universal behavior is proposed in the vicinity of the transition
Interplay among spin, orbital effects and localization in a GaAs two-dimensional electron gas in a strong in-plane magnetic field
The magnetoresistance of a low carrier density, disordered GaAs based
two-dimensional (2D) electron gas has been measured in parallel magnetic fields
up to 32 T. The feature in the resistance associated with the complete spin
polarization of the carriers shifts down by more than 20 T as the electron
density is reduced, consistent with recent theories taking into account the
enhancement of the electron-electron interactions at low densities.
Nevertheless, the magnetic field for complete polarization, Bp, remains 2-3
times smaller than predicted for a disorder free system. We show, in particular
by studying the temperature dependance of Bp to probe the effective size of the
Fermi sea, that localization plays an important role in determining the spin
polarization of a 2D electron gas.Comment: Published in the Physical Review
Wave-optics modeling of the optical-transport line for passive optical stochastic cooling
This work was supported by the US Department of Energy (DOE) under contract DE-SC0013761 to Northern Illinois University. Fermilab is managed by the Fermi Research Alliance, LLC (DE-SC0013761 DEAC02-07CH11359) for the U.S. Department of Energy Office of Science Contract number DE-AC02-07CH11359.Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsytem critical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulato
Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State
The fractional quantum Hall effect is observed at low field, in a regime
where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2
excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with
previous measurements performed on samples with similar mobility, but with
electronic density larger by a factor of two. The role of disorder on the
nu=5/2 gap is examined. Comparison between experiment and theory indicates that
a large discrepancy remains for the intrinsic gap extrapolated from the
infinite mobility (zero disorder) limit. In contrast, no such large discrepancy
is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in
the low-field regime implies that inclusion of non-perturbative Landau level
mixing may be necessary to better understand the energetics of half-filled
fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande
Using the de Haas-van Alphen effect to map out the closed three-dimensional Fermi surface of natural graphite
The Fermi surface of graphite has been mapped out using de Haas van Alphen
(dHvA) measurements at low temperature with in-situ rotation. For tilt angles
between the magnetic field and the c-axis, the majority
electron and hole dHvA periods no longer follow the behavior
demonstrating that graphite has a 3 dimensional closed Fermi surface. The Fermi
surface of graphite is accurately described by highly elongated ellipsoids. A
comparison with the calculated Fermi surface suggests that the SWM trigonal
warping parameter is significantly larger than previously thought
Current-induced nuclear-spin activation in a two-dimensional electron gas
Electrically detected nuclear magnetic resonance was studied in detail in a
two-dimensional electron gas as a function of current bias and temperature. We
show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps,
can induce a re-entrant and even enhanced nuclear spin signal compared with the
signal obtained under similar thermal equilibrium conditions at zero current
bias. Our observations suggest that dynamic nuclear spin polarization by small
current flow is possible in a two-dimensional electron gas, allowing for easy
manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig
- …
