3,323 research outputs found

    Beyond the c=1 Barrier in Two-Dimensional Quantum Gravity

    Get PDF
    We introduce a simple model of touching random surfaces, by adding a chemical potential rho for ``minimal necks'', and study this model numerically coupled to a Gaussian model in d-dimensions (for central charge c = d = 0, 1 and 2). For c <= 1, this model has a phase transition to branched polymers, for sufficiently large rho. For c = 2, however, the extensive simulations indicate that this transition is replaced by a cross-over behavior on finite lattices --- the model is always in the branched polymer phase. This supports recent speculations that, in 2d-gravity, the behavior observe in simulations for c1c \leq 1, is dominated by finite size effects, which are exponentially enhanced as c -> 1+.Comment: 5 pages, 6 eps-figure

    Dimensional reduction in QCD: Lessons from lower dimensions

    Get PDF
    In this contribution we present the results of a series of investigations of dimensional reduction, applied to SU(3) gauge theory in 2 + 1 dimensions. We review earlier results, present a new reduced model with Z(3) symmetry, and discuss the results of numerical simulations of this model.Comment: 10 pages, Talk given at Workshop on Finite Density QCD, Nara Japan 10-12 Jul 200

    Phase transition and topology in 4d simplicial gravity

    Get PDF
    We present data indicating that the recent evidence for the phase transition being of first order does not result from a breakdown of the ergodicity of the algorithm. We also present data showing that the thermodynamical limit of the model is independent of topology.Comment: 3 latex pages + 4 ps fig. + espcrc2.sty. Talk presented at LATTICE(gravity

    Screening Masses in Dimensionally Reduced (2+1)D Gauge Theory

    Get PDF
    We discuss the screening masses and residue factorisation of the SU(3) (2+1)D theory in the dimensional reduction formalism. The phase structure of the reduced model is also investigated.Comment: 3 pages, Lattice 2001(gaugetheories

    Z(3) Symmetric Dimensional Reduction of (2+1)D QCD

    Get PDF
    Here we present a candidate for a Z(3)-symmetric reduced action for the description of the (2+1)D SU(3) gauge theoryComment: 2 pages, Statistical QCD pro

    Random matrix model for QCD_3 staggered fermions

    Full text link
    We show that the lowest part of the eigenvalue density of the staggered fermion operator in lattice QCD_3 at small lattice coupling constant beta has exactly the same shape as in QCD_4. This observation is quite surprising, since universal properties of the QCD_3 Dirac operator are expected to be described by a non-chiral matrix model. We show that this effect is related to the specific nature of the staggered fermion discretization and that the eigenvalue density evolves towards the non-chiral random matrix prediction when beta is increased and the continuum limit is approached. We propose a two-matrix model with one free parameter which interpolates between the two limits and very well mimics the pattern of evolution with beta of the eigenvalue density of the staggered fermion operator in QCD_3.Comment: 8 pages 4 figure

    Three dimensional finite temperature SU(3) gauge theory in the confined region and the string picture

    Full text link
    We determine the correlation between Polyakov loops in three dimensional SU(3) gauge theory in the confined region at finite temperature. For this purpose we perform lattice calculations for the number of steps in the temperature direction equal to six. This is expected to be in the scaling region of the lattice theory. We compare the results to the bosonic string model. The agreement is very good for temperatures T<0.7T_c, where T_c is the critical temperature. In the region 0.7T_c<T<T_c we enter the critical region, where the critical properties of the correlations are fixed by universality to be those of the two dimensional three state Potts model. Nevertheless, by calculating the critical lattice coupling, we show that the ratio of the critical temperature to the square root of the zero temperature string tension, where the latter is taken from the literature, remains very near to the string model prediction.Comment: 11 pages, 1 figure, 1 tabl

    The Weak-Coupling Limit of 3D Simplicial Quantum Gravity

    Get PDF
    We investigate the weak-coupling limit, kappa going to infinity, of 3D simplicial gravity using Monte Carlo simulations and a Strong Coupling Expansion. With a suitable modification of the measure we observe a transition from a branched polymer to a crinkled phase. However, the intrinsic geometry of the latter appears similar to that of non-generic branched polymer, probable excluding the existence of a sensible continuum limit in this phase.Comment: 3 pages 4 figs. LATTICE99(Gravity
    corecore