77 research outputs found
The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans
The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe’s ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode’s biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions
Evidence for the transmission of Salmonella from reptiles to children in Germany, July 2010 to October 2011
This study examines the Salmonella status in reptiles kept in households with children suffering from gastroenteritis due to an exotic Salmonella serovar, to obtain information on possible transmission paths. A number of affected households (n=79) were contacted, and almost half (34/79) comprised at least one reptile in the home. Of the households, 19 were further studied, whereby a total of 36 reptiles were investigated. Samples were taken from the reptiles including the oral cavity, the cloaca, the skin and, in the case of lizards, the stomach, and isolation of Salmonella strains was performed using repeated enrichment and typing. Where the Salmonella serovars of the infected child and the reptile were identical, typing was followed by pulsed-field gel electrophoresis (PFGE). Bearded dragons (Pogona vitticeps) constituted 19 of 36 examined reptiles. Altogether 319 Salmonella isolates were investigated and 24 different serovars identified in the reptiles. In 15 of 19 households, an identical serovar to the human case was confirmed in at least one reptile (including 16 of all 19 bearded dragons examined). The results demonstrate that reptiles and especially bearded dragons shed various Salmonella serovars including those isolated from infected children in the respective households. Hygiene protocols and parents’ education are therefore highly necessary to reduce the risk of transmission. From a terminological point of view, we propose to call such infections ‘Reptile-Exotic-Pet-Associated-Salmonellosis’ (REPAS)
Multiple Spitz naevi: a report of both variants with clinical and histopathological correlation
Spitz naevi are usually solitary lesions. Multiple Spitz naevi are extremely rare and reported as widespread (disseminated) or grouped (agminated). We report two cases of multiple Spitz naevi and review their aetiology and treatment
High Innate Immune Specificity through Diversified C-Type Lectin-Like Domain Proteins in Invertebrates.
A key question in current immunity research is how the innate immune system can generate high levels of specificity. Evidence is accumulating that invertebrates, which exclusively rely on innate defense mechanisms, can differentiate between pathogens on the species and even strain level. In this review, we identify and discuss the particular potential of C-type lectin-like domain (CTLD) proteins to generate high immune specificity. Whilst several CTLD proteins are known to act as pattern recognition receptors in the vertebrate innate immune system, the exact role of CTLD proteins in invertebrate immunity is much less understood. We show that CTLD genes are highly abundant in most metazoan genomes and summarize the current state of knowledge on CTLD protein function in insect, crustacean and nematode immune systems. We then demonstrate extreme CTLD gene diversification in the genomes of Caenorhabditis nematodes and provide an update of data from CTLD gene function studies in C. elegans, which indicate that the diversity of CTLD genes could contribute to immune specificity. In spite of recent achievements, the exact functions of the diversified invertebrate CTLD genes are still largely unknown. Our review therefore specifically discusses promising research approaches to rectify this knowledge gap
Risk factors for inadequate antibody response to primary rabies vaccination in dogs under one year of age.
Ensuring the adequacy of response to rabies vaccination in dogs is important, particularly in the context of pet travel. Few studies have examined the factors associated with dogs' failure to achieve an adequate antibody titer after vaccination (0.5 IU/ml). This study evaluated rabies antibody titers in dogs after primary vaccination. Dogs under one year of age whose serum was submitted to a reference laboratory for routine diagnostics, and which had no prior documented history of vaccination were enrolled (n = 8,011). Geometric mean titers (GMT) were calculated and univariate analysis was performed to assess factors associated with failure to achieve 0.5 IU/mL. Dogs vaccinated at >16 weeks of age had a significantly higher GMT compared to dogs vaccinated at a younger age (1.64 IU/ml, 1.57-1.72, ANOVA p < 0.01). There was no statistical difference in GMT between dogs vaccinated <12 weeks and dogs vaccinated 12-16 weeks (1.22 IU/ml and 1.21 IU/ml). The majority of dogs failed to reach an adequate titer within the first 3 days of primary vaccination; failure rates were also high if the interval from vaccination to titer check was greater than 90 days. Over 90% of dogs that failed primary vaccination were able to achieve adequate titers after booster vaccination. The ideal timing for blood draw is 8-30 days after primary vaccination. In the event of a failure, most dogs will achieve an adequate serologic response upon a repeat titer (in the absence of booster vaccination). Booster vaccination after failure provided the highest probability of an acceptable titer
Detection and subcellular localization of two Sym plasmid-dependent proteins of Rhizobium leguminosarum biovar viciae.
The previously described Sym plasmid-dependent 24-kilodalton rhi protein of Rhizobium leguminosarum biovar viciae was localized in the cytosol fraction. Another Sym plasmid-dependent protein of 50 kilodaltons is secreted into the growth medium, and its expression is dependent on both the nodD gene and a nod gene inducer
Bacteriocin small of fast-growing rhizobia is chloroform soluble and is not required for effective nodulation.
Small bacteriocin is a low-molecular-weight bacteriocin which is common in fast-growing rhizobia. As its activity could not be detected in chloroform-sterilized culture supernatants (P.R. Hirsch, J. Gen. Microbiol. 113:219-228, 1979), the bacteriocin could not be purified in order to study its mechanism of action. We report here that small is soluble in chloroform, an observation which led to effective and simple (partial) purification. Other properties of small are its low molecular weight, which is estimated to be between 700 and 1,500, its resistance to proteolytic enzymes, pectinase, and lysozyme, and its heat stability at pH 5.5 but not at pH 7.0. Its bactericidal action on exponentially growing sensitive cells was not detected until 11 h after its addition. The bactericidal action was preceded by inhibition of cell division. To determine whether small activity is required for nodulation or nitrogen fixation, a transposon Tn5-induced small-negative mutant was isolated. The observation that this strain formed normal, acetylene-reducing root nodules showed that small production is not a prerequisite for the formation of effective nodules
- …