417 research outputs found

    Exploiting the potential of large eddy simulations (LES) for ducted fuel injection investigation in non-reacting conditions

    Get PDF
    The diesel combustion research is increasingly focused on ducted fuel injection (DFI), a promising concept to abate engine-out soot emissions in compression-ignition engines. A large set of experiments carried out in constant volume vessel and numerical simulations, at medium-low computational cost, showed that the duct adoption in front of the injector nozzle activates several soot mitigation mechanisms, leading to quasi-zero soot formation in several engine-like operating conditions. However, although the simplified CFD modelling so far played a crucial role for the preliminary understanding of DFI technology, a more accurate turbulence description approach, combined with a large set of numerical experiments for statistical purposes, is of paramount importance for a robust knowledge of the DFI physical behaviour. In this context, the present work exploits the potential of large eddy simulations (LES) to analyse the non-reacting spray of DFI configuration compared with the unconstrained spray. For this purpose, a previously developed spray model, calibrated and validated in the RANS framework against an extensive amount of experimental data related to both free spray and DFI, has been employed. The tests have been carried out considering a single-hole injector in an optical accessible constant volume vessel, properly replicated in the simulation environment. This high-fidelity simulation model has been adapted for LES, firstly selecting the best grid settings, and then carrying out several numerical experiments for both spray configurations until achieving a satisfying statistical convergence. With this aim, the number of independent samples for the averaging procedure has been increased exploiting the axial symmetry characteristics of the present case study. Thanks to this approach, a detailed description of the main DFI-enabled soot mitigation mechanisms has been achieved, shrinking the knowledge gap in the physical understanding of the impact of spray-duct interaction

    Effect of FCNC mediated Z boson on lepton flavor violating decays

    Full text link
    We study the three body lepton flavor violating (LFV) decays μee+e\mu^- \to e^- e^+ e^-, τlilj+lj\tau^- \to l_i^- l_j^+ l_j^- and the semileptonic decay τμϕ\tau \to \mu \phi in the flavor changing neutral current (FCNC) mediated ZZ boson model. We also calculate the branching ratios for LFV leptonic B decays, Bd,sμeB_{d,s} \to \mu e, Bd,sτeB_{d,s} \to \tau e, Bd,sτμB_{d,s} \to \tau \mu and the conversion of muon to electron in Ti nucleus. The new physics parameter space is constrained by using the experimental limits on μee+e\mu^- \to e^- e^+ e^- and τμμ+μ\tau^- \to \mu^- \mu^+ \mu^-. We find that the branching ratios for τeee\tau \to eee and τμϕ\tau \to \mu \phi processes could be as large as O(108)\sim {\cal O}(10^{-8}) and BrBd,sτμ,τe)O(1010){\rm Br}B_{d,s} \to \tau \mu, \tau e) \sim {\cal O}(10^{-10}). For other LFV B decays the branching ratios are found to be too small to be observed in the near future.Comment: 15 pages, 8 figures, typos corrected, one more section added, version to appear in EPJ

    Some relations between Lagrangian models and synthetic random velocity fields

    Full text link
    We propose an alternative interpretation of Markovian transport models based on the well-mixedness condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well known non-uniqueness problem in the well-mixedness approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of non-zero mean helicity and other geometrical properties of the flow is elucidated. The well-mixedness condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of non-tracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behaviour of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.Comment: 54 pages, 8 eps figures included; contains additional material on SO(3) and on turbulent channel flows. Few typos correcte

    Slepton mass-splittings as a signal of LFV at the LHC

    Full text link
    Precise measurements of slepton mass-splittings might represent a powerful tool to probe supersymmetric (SUSY) lepton flavour violation (LFV) at the LHC. We point out that mass-splittings of the first two generations of sleptons are especially sensitive to LFV effects involving τμ\tau-\mu transitions. If these mass-splittings are LFV induced, high-energy LFV processes like the neutralino decay {\nt}_2\to\nt_1\tau^{\pm}\mu^{\mp} as well as low-energy LFV processes like τμγ\tau\to\mu\gamma are unavoidable. We show that precise slepton mass-splitting measurements and LFV processes both at the high- and low-energy scales are highly complementary in the attempt to (partially) reconstruct the flavour sector of the SUSY model at work. The present study represents another proof of the synergy and interplay existing between the LHC, i.e. the {\em high-energy frontier}, and high-precision low-energy experiments, i.e. the {\em high-intensity frontier}.Comment: 11 pages, 5 figures. v2: added discussion on backgrounds, added references, version to be published on JHE

    Charged Lepton Flavor Physics and Extra Dimensions

    Get PDF
    We estimate the charged lepton electric dipole moments and the branching ratios of radiative lepton flavor violating decays in the framework of the two Higgs doublet model with the inclusion two extra dimensions. Here, we consider that the new Higgs doublet is accessible to one of the extra dimensions with a Gaussian profile and the fermions are accessible to the other extra dimension with uniform zero mode profile. We observe that the numerical values of the physical quantities studied enhance with the additional effects due to the extra dimensions and they are sensitive to the new Higgs localization.Comment: 23 pages, 13 page

    μe\mu-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality

    Full text link
    In this paper we study μe\mu-e conversion in nuclei within the context of the Constrained Minimal Supersymmetric Standard Model, enlarged by three right handed neutrinos and their supersymmetric partners, and where the neutrino masses are generated via a seesaw mechanism. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. In the first part we present a complete one-loop computation of the conversion rate for this process that includes the photon-, ZZ-boson, and Higgs-boson penguins, as well as box diagrams, and compare their size in the two considered scenarios. Then, in these two scenarios we analyse the relevance of the various parameters on the conversion rates, particularly emphasising the role played by the heavy neutrino masses, tanβ\tan \beta, and especially θ13\theta_{13}. In the case of hierachical heavy neutrinos, an extremely high sensitivity of the rates to θ13\theta_{13} is indeed found. The last part of this work is devoted to the study of the interesting loss of correlation between the μe\mu-e conversion and μeγ\mu \to e \gamma rates that occurs in the non-universal scenario. In the case of large tanβ\tan \beta and light H0H^0 Higgs boson an enhanced ratio of the μe\mu-e to μeγ\mu \to e \gamma rates, with respect to the universal case is found, and this could be tested with the future experimental sensitivities.Comment: 48 pages, 15 figures. Minor typos corrected and some references adde

    Lepton flavour violation in the MSSM

    Full text link
    We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which parametrise the flavour-off-diagonal terms of the charged slepton mass matrix in the MSSM. Considering mass and anomalous magnetic moment of the electron we obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which involves the poorly constrained element delta^{13}_{RR}. We improve the predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by including two-loop corrections which are enhanced if tan beta is large. The finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is derived and applied to the charged-Higgs-lepton vertex. We find that the experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM loop correction to the PMNS element U_{e3}, which is important for the proper interpretation of a future U_{e3} measurement. Subsequently we confront our new values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of the first two generations. If universal supersymmetry breaking occurs above the GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte

    Testing new physics with the electron g-2

    Get PDF
    We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large class of models, new contributions to magnetic moments scale with the square of lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in which this scaling is violated and larger effects in a_e are expected. In such models the value of a_e is correlated with specific predictions for processes with violation of lepton number or lepton universality, and with the electric dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde
    corecore