354 research outputs found

    A Vertex Correction in the Gap Equation for the High Temperature Superconductors

    Full text link
    We show that the Migdal theorem is obviously violated in the high Tc cuprates and the vertex correction should be included, in particular, in the gap equation, in order to be consistent with the anomalously strong inelastic scattering in the ``hot spots'', which is observed from the various normal state experiments. The vertex correction is obtained by utilizing the generalized Ward identity, which is shown to hold in the important scattering channel for the pairing interaction in the high Tc cuprates. As a result, we find a strong enhancement of Tc from the vertex correction despite of the strong pair breaking effect due to the inelastic scattering.Comment: 5 pages, 2 figure

    Strong enhancement of spin fluctuations in the low-temperature-tetragonal phase of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4

    Full text link
    Measurements of the static magnetization, susceptibility and ESR of Gd spin probes have been performed to study the properties of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4 (x less or equal 0.02) with the low temperature tetragonal structure. According to the static magnetic measurements the CuO_2 planes are magnetically decoupled in this structural phase. The ESR study reveals strong magnetic fluctuations at the ESR frequency which are not present in the orthorhombic phase. It is argued that this drastic enhancement of the spin fluctuations is due to a considerable weakening of the interlayer exchange and a pronounced influence of hole motion on the antiferromagnetic properties of lightly hole doped La_2CuO_4. No evidence for the stripe phase formation at small hole doping is obtained in the present study.Comment: 10 pages, LaTeX, 3 EPS figures; to be published in Journal of Physics: Condensed Matte

    A Theory of the Longitudinal and Hall Conductivities of the Cuprate Superconductors

    Full text link
    We establish the applicability to transport phenomena in the cuprate superconductors of a nearly antiferromagnetic Fermi liquid (NAFL) description of the magnetic interaction between planar quasiparticles by using it to obtain the temperature dependent resistivity and Hall conductivity seen experimentally in the normal state. Following a perturbative calculation of the anisotropic (as one goes around the Fermi surface) quasiparticle lifetimes which are the hallmark of a NAFL, we obtain simple approximate expressions for the longitudinal, σxx\sigma_{xx}, and Hall, σxy\sigma_{xy}, conductivities which reflect the magnetic crossovers seen experimentally as one varies the doping level and temperature. We present a simple phenomenological model for the variation in mean free path around the Fermi surface, and use this to extract from experiments on σxx\sigma_{xx} and σxy\sigma_{xy} quasiparticle lifetimes in the hot (strongly coupled quasiparticle) and cold (weakly coupled quasiparticle) regions of the Fermi surface which are consistent with the perturbation theory estimates. We improve upon the latter by carrying out direct numerical (non-variational) solutions of the Boltzmann equation for representative members of the YBa2_2Cu3_3O6+x_{6+x} and La2−x_{2-x}Srx_xCuO4_4 systems, with results for transport properties in quantitative agreement with experiment. Using the same numerical approach we study the influence of CuO chains on the a-b plane anisotropy and find results in agreement with experimental findings in YBa2_2Cu4_4O8_8.Comment: 49 pages + 24 PostScript figure

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Transport Anomalies and the Role of Pseudogap in the "60-K Phase" of YBa_{2}Cu_{3}O_{7-\delta}

    Full text link
    We report the result of our accurate measurements of the a- and b-axis resistivity, Hall coefficient, and the a-axis thermopower in untwinned YBa_{2}Cu_{3}O_{y} single crystals in a wide range of doping. It is found that both the a-axis resistivity and the Hall conductivity show anomalous dependences on the oxygen content y in the "60-K phase" below the pseudogap temperature T^*. The complete data set enables us to narrow down the possible pictures of the 60-K phase, with which we discuss a peculiar role of the pseudogap in the charge transport.Comment: 4 pages, 4 figures, accepted for publication in PR

    Statistics of charged solitons and formation of stripes

    Full text link
    The 2-fold degeneracy of the ground state of a quasi-one-dimensional system allows it to support topological excitations such as solitons. We study the combined effects of Coulomb interactions and confinement due to interchain coupling on the statistics of such defects. We concentrate on a 2D case which may correspond to monolayers of polyacetylene or other charge density waves. The theory is developped by a mapping to the 2D Ising model with long-range 4-spin interactions. The phase diagram exhibits deconfined phases for liquids and Wigner crystals of kinks and confined ones for bikinks. Also we find aggregated phases with either infinite domain walls of kinks or finite rods of bikinks. Roughening effects due to both temperature and Coulomb repulsion are observed. Applications may concern the melting of stripes in doped correlated materials.Comment: 16 pages, 7 figure

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2−x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ′′\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2−x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000

    Effective Lorentz Force due to Small-angle Impurity Scattering: Magnetotransport in High-Tc Superconductors

    Full text link
    We show that a scattering rate which varies with angle around the Fermi surface has the same effect as a periodic Lorentz force on magnetotransport coefficients. This effect, together with the marginal Fermi liquid inelastic scattering rate gives a quantitative explanation of the temperature dependence and the magnitude of the observed Hall effect and magnetoresistance with just the measured zero-field resistivity as input.Comment: 4 pages, latex, one epsf figure included in text. Several revisions and corrections are included. Major conclusions are the sam

    NMR and Neutron Scattering Experiments on the Cuprate Superconductors: A Critical Re-Examination

    Full text link
    We show that it is possible to reconcile NMR and neutron scattering experiments on both LSCO and YBCO, by making use of the Millis-Monien-Pines mean field phenomenological expression for the dynamic spin-spin response function, and reexamining the standard Shastry-Mila-Rice hyperfine Hamiltonian for NMR experiments. The recent neutron scattering results of Aeppli et al on LSCO (x=14%) are shown to agree quantitatively with the NMR measurements of 63T1^{63}T_1 and the magnetic scaling behavior proposed by Barzykin and Pines. The reconciliation of the 17T1^{17}T_1 relaxation rates with the degree of incommensuration in the spin fluctuation spectrum seen in neutron experiments is achieved by introducing a new transferred hyperfine coupling C′C' between oxygen nuclei and their next nearest neighbor Cu2+Cu^{2+} spins; this leads to a near-perfect cancellation of the influence of the incommensurate spin fluctuation peaks on the oxygen relaxation rates of LSCO. The inclusion of the new C′C' term also leads to a natural explanation, within the one-component model, the different temperature dependence of the anisotropic oxygen relaxation rates for different field orientations, recently observed by Martindale et alet~al. The measured significant decrease with doping of the anisotropy ratio, R=63T1ab/63T1cR= ^{63}T_{1ab}/^{63}T_{1c} in LSCO system, from R=3.9R =3.9 for La2CuO4{\rm La_2CuO_4} to R 3.0R ~ 3.0 for LSCO (x=15%) is made compatible with the doping dependence of the shift in the incommensurate spin fluctuation peaks measured in neutron experiments, by suitable choices of the direct and transferred hyperfine coupling constants AβA_{\beta} and B.Comment: 24 pages in RevTex, 9 figures include

    Singularities in the optical response of cuprates

    Full text link
    We argue that the detailed analysis of the optical response in cuprate superconductors allows one to verify the magnetic scenario of superconductivity in cuprates, as for strong coupling charge carriers to antiferromagnetic spin fluctuations, the second derivative of optical conductivity should contain detectable singularities at 2Δ+Δspin2\Delta +\Delta_{\rm spin}, 4Δ4\Delta, and 2Δ+2Δspin2\Delta+2\Delta_{\rm spin}, where Δ\Delta is the amplitude of the superconducting gap, and Δs\Delta_{s} is the resonance energy of spin fluctuations measured in neutron scattering. We argue that there is a good chance that these singularities have already been detected in the experiments on optimally doped YBCOYBCO.Comment: 6 pages, 4 figure
    • …
    corecore