37 research outputs found

    Asymptotic expansion for reversible A + B <-> C reaction-diffusion process

    Full text link
    We study long-time properties of reversible reaction-diffusion systems of type A + B C by means of perturbation expansion in powers of 1/t (inverse of time). For the case of equal diffusion coefficients we present exact formulas for the asymptotic forms of reactant concentrations and a complete, recursive expression for an arbitrary term of the expansions. Taking an appropriate limit we show that by studying reversible reactions one can obtain "singular" solutions typical of irreversible reactions.Comment: 6 pages, no figures, to appear in PR

    Academic freedom in Europe: time for a Magna Charta?

    Get PDF
    This paper is a preliminary attempt to establish a working definition of academic freedom for the European Union states. The paper details why such a definition is required for the European Union and then examines some of the difficulties of defining academic freedom. By drawing upon experience of the legal difficulties beset by the concept in the USA and building on previous analyses of constitutional and legislative protection for academic freedom, and of legal regulations concerning institutional governance and academic tenure, a working definition of academic freedom is then derived. The resultant definition which, it is suggested, could form the basis for a European Magna Charta Libertatis Academicae, goes beyond traditional discussions of academic freedom by specifying not only the rights inherent in the concept but also its accompanying duties, necessary limitations and safeguards. The paper concludes with proposals for how the definition might be tested and carried forward

    Behavior of the reaction front between initially segregated species in a two-stage reaction

    Get PDF
    The large-time asymptotic behavior of a two-stage reaction (A+B→R, B+R→S) with initially segregated reactants is described. The concentration of the reactants is found to be significantly less than the initial concentrations in a depletion zone of width proportional to t[sup. 1/2], where t is time; the reaction takes place in a thinner zone of width proportional to t[sup. 1/6]. Similarity solutions for the chemical concentration profiles in the reaction zone are calculated, and are compared with numerical simulations of the full partial differential reaction-diffusion equations. The large-time asymptotic scalings reported here are the same as in the absence of the secondary reaction, but we find that the location of the reaction zone is significantly shifted due to the secondary reaction. The reaction zone may behave in an exotic fashion at large time, moving first one way, then reversing its direction.Stephen M. Cox and Matthew D. Fin
    corecore