22 research outputs found

    The Effects of Bose-Condensates on Single Inclusive Spectra and Bose-Einstein Correlations

    Full text link
    The implications of the formation of a Bose condensate on one- and two-particle spectra are studied for ultrarelativistic nucleus-nucleus collisions in the framework of a hydrodynamic description. It is found that single particle spectra are considerably enhanced at low momenta. The Bose-Einstein correlation function has an intercept below two. For pion pairs in the central region a two-component structure may appear in the correlation function, which is different from that found in quantum optics. The chaoticity parameter is strongly momentum dependent.Comment: 16 pages, 1 Postscript figur

    Probing the equation of state in the AGS energy range with 3-d hydrodynamics

    Full text link
    The effect of (i) the phase transition between a quark gluon plasma (QGP) and a hadron gas and (ii) the number of resonance degrees of freedom in the hadronic phase on the single inclusive distributions of 16 different types of produced hadrons for Au+Au collisions at AGS energies is studied. We have used an exact numerical solution of the relativistic hydrodynamical equations without free parameters which, because of its 3-d character, constitutes a considerable improvement over the classical Landau solution. Using two different equations of state (eos) - one containing a phase transition from QGP to the Hadronic Phase and two versions of a purely hadronic eos - we find that the first one gives an overall better description of the Au+Au experimental data at AGSAGS energies. We reproduce and analyse measured meson and proton spectra and also make predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t enhancement in pi- spectra is explained by baryon number conservation and strangeness equilibration. We also find that negative kaon data are more sensitive to the eos, as well as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a phase transition in the forward rapidity region. Anti-protons, Omegas and heavy anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps

    Space-time extensions from space-time densities and Bose-Einstein correlations

    Get PDF
    Using a (3+1)-dimensional solution of the relativistic Euler-equations for Pb+PbPb+Pb at 160 AGeVAGeV, space-time extensions of kaon emission zones are calculated from space-time densities and compared to the inverse widths of two-kaon Bose-Einstein correlation functions. The comparison shows a satisfactory agreement and it is concluded that because of the Gaussian shape of the kaon correlation functions, the space-time parameters of the kaon source can be calculated directly from space-time densities. In the case of intensity interferometry of identical pions this simplification is not recommended when applying Gaussian fits because of the present strong effects of resonance decays. The whole discussion is based on the assumption that hadron emission in ultra-relativistic heavy-ion collisions is purely chaotic or that coherence is at least negligible.Comment: 11 pages, 2 figures (distributed on 3 Postscript files

    Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies

    Full text link
    We present a coherent theoretical study of ultrarelativistic heavy-ion data obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional relativistic hydrodynamics. We find excellent agreement with the rapidity spectra of negative hadrons and protons and with the correlation measurements in two experiments: S+SS+S at 200 AGeVAGeV and Pb+PbPb+Pb at 160 AGeVAGeV (preliminary results). Within our model this implies that for Pb+PbPb+Pb (S+SS+S) a quark-gluon-plasma of initial volume 174 fm3fm^3 (24 fm3fm^3) with a lifetime 3.4 fm/cfm/c (1.5 fm/cfm/c) was formed. It is found that the Bose-Einstein correlation measurements do not determine the maximal effective radii of the hadron sources because of the large contributions from resonance decay at small momenta. Also within this study we present an NA49 acceptance corrected two-pion Bose-Einstein correlation function in the invariant variable, QinvQ_{inv}.Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be requested for submission via e.mail from [email protected]

    Various Models for Pion Probability Distributions from Heavy-Ion Collisions

    Get PDF
    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η\eta of a Poisson emitter and a critical density ηc\eta_c are connected in a thermal model by η/nc=em/T<1\eta/n_c = e^{-m/T} < 1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model.Comment: 12 pages, incl. 3 figures and 4 tables. You can also download a PostScript file of the manuscript from http://p2hp2.lanl.gov/people/schlei/eprint.htm

    On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions

    Get PDF
    Within a hydrodynamical approach we investigate the sensitivity of single inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three different equations of state of nuclear matter. Two of the equations of state are based on lattice QCD results and include a phase transition to a quark-gluon plasma. The third equation of state has been extracted from the microscopic transport code RQMD under the assumption of complete local thermalization. All three equations of state provide reasonable fits to data taken by the NA44 and NA49 Collaborations. The initial conditions before the evolution of the fireballs and the space-time evolution pictures differ dramatically for the three equations of state when the same freeze-out temperature is used in all calculations. However, the softest of the equations of state results in transverse mass spectra that are too steep in the central rapidity region. We conclude that the transverse particle momenta are determined by the effective softness of the equation of state during the fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm

    Hydrodynamics near the QCD Phase Transition: Looking for the Longest-Lived Fireball

    Get PDF
    We propose a new strategy for the experimental search of the QCD phase transition in heavy ion collisions: One may tune collision energy around the point where the lifetime of the fireball is expected to be longest. We demonstrate that the hydrodynamic evolution of excited nuclear matter does change dramatically as the initial energy density goes through the "softest point" (where the pressure to energy density ratio reaches its minimum). For our choice of equation of state, this corresponds to epsilon_i approx. = 1.5 GeV/fm^3 and collision energy E_lab/A approx. = 30 GeV (for Au+Au). Various observables seem to show distinct changes near the softest point.Comment: 7 pages, 3 Postscript figures (tar compressed and uuencoded) submitte

    Low Freeze-out Temperature and High Collective Velocities in Relativistic Heavy-Ion Collisions

    Full text link
    On the basis of a nine-parameter expanding source model that includes special relativity, quantum statistics, resonance decays, and freeze-out on a realistic hypersurface in spacetime, we analyze in detail invariant pi+, pi-, K+, and K- one-particle multiplicity distributions and pi+ and K+ two-particle correlations in nearly central collisions of Si + Au at a laboratory bombarding energy per nucleon of 14.6 GeV/c. By considering separately the one-particle data and the correlation data, we find that the central baryon density, nuclear temperature, transverse collective velocity, longitudinal collective velocity, and source velocity are determined primarily by one-particle multiplicity distributions and that the transverse radius, longitudinal proper time, width in proper time, and pion incoherence fraction are determined primarily by two-particle correlations. By considering separately the pion data and the kaon data, we find that although the pion freeze-out occurs somewhat later than the kaon freeze-out, the 99% confidence-level error bars associated with the two freeze-outs overlap. These and other detailed studies confirm our earlier conclusion based on the simultaneous consideration of the pion and kaon one-particle and correlation data that the freeze-out temperature is less than 100 MeV and that both the longitudinal and transverse collective velocities--which are anti-correlated with the temperature--are substantial. We also discuss the flaws in several previous analyses that yielded a much higher freeze-out temperature of approximately 140 MeV for both this reaction and other reactions involving heavier projectiles and/or higher bombarding energies.Comment: 14 pages. RevTeX 3.1. Submitted to Physical Review C. PostScript version available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/lf

    Thermal phenomenology of hadrons from 200 AGeV S+S collisions

    Full text link
    We develop a complete and consistent description for the hadron spectra from heavy ion collisions in terms of a few collective variables, in particular temperature, longitudinal and transverse flow. To achieve a meaningful comparison with presently available data, we also include the resonance decays into our picture. To disentangle the influences of transverse flow and resonance decays in the mTm_T-spectra, we analyse in detail the shape of the mTm_T-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and dvips, TPR-93-16 and BNL-(no number yet

    Chiral Nonet Mixing in pi pi Scattering

    Get PDF
    Pion pion scattering is studied in a generalized linear sigma model which contains two scalar nonets (one of quark-antiquark type and the other of diquark-antidiquark type) and two corresponding pseudoscalar nonets. An interesting feature concerns the mixing of the four isosinglet scalar mesons which yield poles in the scattering amplitude. Some realism is introduced by enforcing exact unitarity via the K-matrix method. It is shown that a reasonable agreement with experimental data is obtained up to about 1 GeV. The poles in the unitarized scattering amplitude are studied in some detail. The lowest pole clearly represents the sigma meson (or f0(600)) with a mass and decay width around 500 MeV. The second pole invites comparison with the f0(980) which has a mass around 1 GeV and decay width around 100 MeV. The third and fourth poles, resemble some of the isosinglet state in the complicated 1-2 GeV region. Some comparison is made to the situation in the usual SU(3) linear sigma model with a single scalar nonet
    corecore