62 research outputs found

    Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    Get PDF
    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory

    Oculomotor Evidence for Top-Down Control following the Initial Saccade

    Get PDF
    The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1) or defined as (Experiment 2) a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter

    Coordinated Activity of Ventral Tegmental Neurons Adapts to Appetitive and Aversive Learning

    Get PDF
    Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning

    Nanoencapsulation of green tea extract by thin film layer method and its properties

    No full text
    The application of natural compounds including green tea extract (GTE) in food preparation and pharmaceutical industries is limited. Encapsulation in nanoliposomes could be used as a delivery system to protect these compounds during processing and storage. In this study physicochemical characterization, total phenol content and antibacterial and antioxidant activity of green tea extract encapsulated in nanoliposomes were evaluated. GTE was encapsulated in liposomes by thin film layer method and reached to nanoscale with sonication. The antioxidant activity of nanoliposomal GTE was estimated by DPPH assay. The antibacterial activity of nanoliposomal GTE against Bacillus cereus (ATCC11778), Salmonella typhimurium 138 phage type 2, Escherichia coli O157:H7 and Listeria monocytogenes (ATCC19118) was determined using well diffusion technique. The mean diameter of nanoliposomes was about 44.7±1.9 nm and had 0.203±0.014 polydispersity index. Entrapment efficiency of nanoliposomal GTE under the optimum conditions was 97%. Antibacterial activity of GTE was significantly increased after encapsulation in nanoliposomes. The strongest antibacterial activity of nanoliposomal GTE was seen against L. monocytogenes with an inhibition zone of 16.2 mm while E. coli was the most resistance strain with an inhibition zone of 14 mm. Furthermore, the antioxidant activity of GTE was significantly increased after nanoliposome encapsulation since the IC50 value of nanoliposomal GTE was decreased to 1.78 μg/ml. Nanoencapsulation effectively enhanced beneficial properties of GTE including antimicrobial and antioxidant activities

    Response time as an index for selective auditory cognitive deficits.

    No full text
    The full or partial recovery of cognitive functions following brain lesions is believed to rely on the recruitment of alternative neural networks. This has been shown anatomically for selective auditory cognitive functions (Adriani et al. 2003b). We investigate here behavioral correlates that may accompany the use of alternative processing networks and in particular the resulting increase in response times. The performance of 5 patients with right or left unilateral hemispheric infarction and 6 normal control subjects in sound identification, asemantic sound recognition, sound localization, and sound motion perception was evaluated by the number of correct replies and response times for correct and wrong replies. Performance and response times were compared across patients and normal control subjects. Two patients with left lesions were deficient in sound identification and sound motion perception and normal in sound localization and asemantic sound recognition; one patient with right lesion was deficient in sound localization and sound motion perception and normal in sound identification and asemantic sound recognition; deficient performance was associated with increased response times. The remaining 2 patients (1 with left, 1 with right lesion) had normal performance in all 4 tasks but had significantly longer response times in some (but not all) tasks. Patients with normal or deficient performance tended more often than normal subjects to give faster correct than wrong replies. We propose that increased response time is an indication of processing within an alternative network
    corecore