118 research outputs found

    Exact calculation of the radiatively-induced Lorentz and CPT violation in QED

    Get PDF
    Radiative corrections arising from the axial coupling of charged fermions to a constant vector b_\mu can induce a Lorentz- and CPT-violating Chern-Simons term in the QED action. We calculate the exact one-loop correction to this term keeping the full b_\mu dependence, and show that in the physically interesting cases it coincides with the lowest-order result. The effect of regularization and renormalization and the implications of the result are briefly discussed.Comment: LaTex, 8 pages; minor correction

    Chern-Simons like term generation in an extended model of QED under external conditions

    Full text link
    The possibility of a Chern-Simons like term generation in an extended model of QED, in which a Lorentz and CPT non-covariant interaction term for fermions is present, has been investigated at finite temperature and in the presence of a background color magnetic field. To this end, the photon polarization operator in an external constant axial-vector field has been considered. One-loop contributions to its antisymmetric component due to fermions in the linear order of the axial-vector field have been obtained. Moreover, the first nontrivial correction to the induced CS term due to the presence of a weak constant homogeneous color magnetic field has been derived.Comment: RevTex, 10 pages with 3 figure

    Lorentz-breaking effects in scalar-tensor theories of gravity

    Full text link
    In this work, we study the effects of breaking Lorentz symmetry in scalar-tensor theories of gravity taking torsion into account. We show that a space-time with torsion interacting with a Maxwell field by means of a Chern-Simons-like term is able to explain the optical activity in syncrotron radiation emitted by cosmological distant radio sources. Without specifying the source of the dilaton-gravity, we study the dilaton-solution. We analyse the physical implications of this result in the Jordan-Fierz frame. We also analyse the effects of the Lorentz breaking in the cosmic string formation process. We obtain the solution corresponding to a cosmic string in the presence of torsion by keeping track of the effects of the Chern-Simons coupling and calculate the charge induced on this cosmic string in this framework. We also show that the resulting charged cosmic string gives us important effects concerning the background radiation.The optical activity in this case is also worked out and discussed.Comment: 10 pages, no figures, ReVTex forma

    A Godel-Friedman cosmology?

    Full text link
    Based on the mathematical similarity between the Friedman open metric and Godel's metric in the case of nearby distances, we investigate a new scenario for the Universe's evolution, where the present Friedman universe originates from a primordial Godel universe by a phase transition during which the cosmological constant vanishes. Using Hubble's constant and the present matter density as input, we show that the radius and density of the primordial Godel universe are close, in order of magnitude, to the present values, and that the time of expansion coincides with the age of the Universe in the standard Friedman model. In addition, the conservation of angular momentum provides, in this context, a possible origin for the rotation of galaxies, leading to a relation between the masses and spins corroborated by observational data.Comment: Extended version, accepted for publication in Physical Review

    Bayesian Analysis of the Polarization of Distant Radio Sources: Limits on Cosmological Birefringence

    Get PDF
    A recent study of the rotation of the plane of polarization of light from 160 cosmological sources claims to find significant evidence for cosmological anisotropy. We point out methodological weaknesses of that study, and reanalyze the same data using Bayesian methods that overcome these problems. We find that the data always favor isotropic models for the distribution of observed polarizations over counterparts that have a cosmological anisotropy of the type advocated in the earlier study. Although anisotropic models are not completely ruled out, the data put strong lower limits on the length scale λ\lambda (in units of the Hubble length) associated with the anisotropy; the lower limits of 95% credible regions for λ\lambda lie between 0.43 and 0.62 in all anisotropic models we studied, values several times larger than the best-fit value of λ0.1\lambda \approx 0.1 found in the earlier study. The length scale is not constrained from above. The vast majority of sources in the data are at distances closer than 0.4 Hubble lengths (corresponding to a redshift of \approx0.8); the results are thus consistent with there being no significant anisotropy on the length scale probed by these data.Comment: 8 pages, 3 figures; submitted to Phys. Rev.

    Approximate Analytic Solution for the Spatiotemporal Evolution of Wave Packets undergoing Arbitrary Dispersion

    Full text link
    We apply expansion methods to obtain an approximate expression in terms of elementary functions for the space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how predicted and experimental effects may be compared to improve the theoretical description of a medium's dispersive properties.Comment: 17 pages, 4 figures, RevTe

    Cosmic optical activity in the spacetime of a scalar-tensor screwed cosmic string

    Full text link
    Measurements of radio emission from distant galaxies and quasars verify that the polarization vectors of these radiations are not randomly oriented as naturally expected. This peculiar phenomenon suggests that the spacetime intervening between the source and observer may be exhibiting some sort of optical activity, the origin of which is not known. In the present paper we provide a plausible explanation to this phenomenon by investigating the r\^ole played by a Chern-Simons-like term in the background of an ordinary or superconducting screwed cosmic string in a scalar-tensor gravity. We discuss the possibility that the excess in polarization of the light from radio-galaxies and quasars can be understood as if the electromagnetic waves emitted by these cosmic objects interact with a scalar-tensor screwed cosmic string through a Chern-Simons coupling. We use current astronomical data to constrain possible values for the coupling constant of this theory, and show that it turns out to be: λ1026\lambda \sim 10^{-26} eV, which is two orders of magnitude larger than in string-inspired theories.Comment: Revised version, to appear in Phys. Rev.

    Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model

    Get PDF
    We study the renormalizable abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability is achieved by supplementing the standard kinetic term of vector fields with higher derivatives. The appearance of fourth power of momentum in the vector-field propagator leads to the super-renormalizable theory in which the β\beta-function, the vector-field renormalization constant and the anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point and its low-energy limit is non-trivial. The modified effective potential for the pseudoscalar matter leads to the possible occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is related to the modification of Electrodynamics by means of the Chern-Simons (CS) interaction polarized along a constant CS vector. Its presence makes the vacuum optically active that has been recently estimated from astrophysical data. We examine two possibilities for the CS vector to be time-like or space-like, under the assumption that it originates from v.e.v. of some pseudoscalar matter and show that only the latter one is consistent in the framework of the AWZ model, because a time-like CS vector makes the vacuum unstable under pairs creation of tachyonic photon modes with the finite vacuum decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.

    Kalb-Ramond excitations in a thick-brane scenario with dilaton

    Full text link
    We compute the full spectrum and eigenstates of the Kalb-Ramond field in a warped non-compact Randall-Sundrum -type five-dimensional spacetime in which the ordinary four-dimensional braneworld is represented by a sine-Gordon soliton. This 3-brane solution is fully consistent with both the warped gravitational field and bulk dilaton configurations. In such a background we embed a bulk antisymmetric tensor field and obtain, after reduction, an infinite tower of normalizable Kaluza-Klein massive components along with a zero-mode. The low lying mass eigenstates of the Kalb-Ramond field may be related to the axion pseudoscalar. This yields phenomenological implications on the space of parameters, particularly on the dilaton coupling constant. Both analytical and numerical results are given.Comment: 10 pages, 13 figures, and 2 tables. Final version to appear in The European Physical Journal
    corecore