274 research outputs found

    Sound Multi-Party Business Protocols for Service Networks

    Get PDF
    Service networks comprise large numbers of long-running, highly dynamic complex end-to-end service interactions reflecting asynchronous message flows that typically transcend several organizations and span several geographical locations. At the communication level, service network business protocols can be flexible ranging from conventional inter-organizational point-to-point service interactions to fully blown dynamic multi-party interactions of global reach within which each participant may contribute its activities and services. In this paper we introduce a formal framework enriched with temporal constraints to describe multiparty business protocols for service networks. We extend this framework with the notion of multi-party business protocol soundness and show how it is possible to execute a multi-party protocol consistently in a completely distributed manner while guaranteeing eventual termination

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis

    Get PDF
    Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis. Patlak graphical analysis was applied to quantify renal cortical blood flow with N-13 ammonia and dynamic positron emission tomography. Measurements were made in a swine model of kidney transplantation with a wide range of normal and abnormal renal blood flows (N = 57 studies) and in 20 healthy human volunteers (N = 45 studies). Estimates of renal cortical blood flow by the Patlak method were compared to those from a two-compartment model for N-13 ammonia. In addition, estimates of renal cortical blood flow by the N-13 ammonia PET approach were compared in 10 normal human volunteers to estimates by the metabolically inert, freely diffusible O-15 water and a one-compartment model. Patlak graphical analysis estimates of renal cortical blood flow correlated linearly with the standard two-compartment model in pigs (y = -0.05 + 1.01x, r = 0.99) and in humans (y = 0.57 + 0.88x, r = 0.93). Estimates of renal cortical blood flow by O-15 water in human volunteers were also linearly correlated with those by N-13 ammonia and the Patlak graphical analysis (y = 0.71 + 0.84x, r = 0.86). Renal cortical blood flow estimates were highly reproducible both with N-13 ammonia and O-15 water measurements in humans. It is concluded that the Patlak graphical analysis with N-13 ammonia dynamic positron emission tomographic imaging renders accurate and reproducible estimates of renal cortical blood flow. Moreover, the graphical analysis approach is 1,000 times faster than the standard model fitting approach and suitable for generating parametric images of renal blood flow in the clinical setting

    Harmonic Forcing Amplitude Effects in Globally Unstable Transonic Wing Flow

    Get PDF
    This work concerns the phenomenon of shock buffet and its mutual interaction with the flexible wing structure. The latter aspect is key to our contribution, since, even though renewed interest in edge-of-the-envelope flow unsteadiness can be observed in recent years, the multidisciplinary aeroelastic interaction is typically overlooked. Previous work by Timme [1] applied stability theory to a large aircraft wing, specifically the NASA Common Research Model, to reveal a global instability linked to shock buffet. Herein, we expand upon that work by adding the dimension of wing vibration to scrutinise its impact on the flow unsteadiness. We consider fluid-structure interaction solving the unsteady Reynolds-averaged Navier–Stokes equations with an industry-grade computational fluid dynamics solver to model the aerodynamics and a modal structural model of the actual wind-tunnel geometry to describe the flexible wing. Our focus experimental flow condition is a reference free-stream Mach number of 0.85 with a chord Reynolds number of 5 × 106 and a supercritical angle of attack of 3.75◦ . Results show that the initial aerodynamic unsteadiness, when started from a well converged static aeroelastic solution (validated with wind-tunnel data), is nearly independent of the presence of the flexible wing structure as long as the amplitudes are small. Indeed wing vibration follows the dominant shock-buffet excitation. Once transitioned into the non-linear aerodynamic regime (while noting that at the time of writing a longer time history is still required), most of the structural degrees-of-freedom are active close to their respective natural frequencies and also within the shock-buffet frequency range. An aeroelastic global stability analysis presented in our companion paper [2] has revealed that several of these modes become unstable due to the fluid-structure coupling. Overall the impact of the flexible wing results in lower amplitudes in integrated aerodynamic coefficients with a broader frequency content peaking around the first bending frequencies and the shock-buffet frequency range, which is in contrast to the rigid (yet statically deformed) wing where the shock-buffet excitation clearly dominates

    The Worksite Health Promotion Capacity Instrument (WHPCI): development, validation and approaches for determining companies' levels of health promotion capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Worksite Health Promotion Capacity Instrument (WHPCI) was developed to assess two key factors for effective worksite health promotion: collective willingness and the systematic implementation of health promotion activities in companies. This study evaluates the diagnostic qualities of the WHPCI based on its subscales Health Promotion Willingness and Health Promotion Management, which can be used to place companies into four different categories based on their level of health promotion capacity.</p> <p>Methods</p> <p>Psychometric evaluation was conducted using exploratory factor and reliability analyses with data taken from a random sample of managers from n = 522 German information and communication technology (ICT) companies. Receiver operating characteristic (ROC) analyses were conducted to determine further diagnostic qualities of the instrument and to establish the cut-off scores used to determine each company's level of health promotion capacity.</p> <p>Results</p> <p>The instrument's subscales, Health Promotion Willingness and Health Promotion Management, are based on one-dimensional constructs, each with very good reliability (Cronbach's alpha = 0.83/0.91). ROC analyses demonstrated satisfactory diagnostic accuracy with an area under the curve (AUC) of 0.76 (SE = 0.021; 95% CI 0.72-0.80) for the Health Promotion Willingness scale and 0.81 (SE = 0.021; 95% CI 0.77-0.86) for the Health Promotion Management scale. A cut-off score with good sensitivity (71%/76%) and specificity (69%/75%) was determined for each scale. Both scales were found to have good predictive power and exhibited good efficiency.</p> <p>Conclusions</p> <p>Our findings indicate preliminary evidence for the validity and reliability of both subscales of the WHPCI. The goodness of each cut-off score suggests that the scales are appropriate for determining companies' levels of health promotion capacity. Support in implementing (systematic) worksite health promotion can then be tailored to each company's needs based on their current capacity level.</p

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity

    Get PDF
    For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program
    corecore