17 research outputs found

    Development of a high throughput screening tool for biotransformations utilising a thermophilic L-aminoacylase enzyme

    No full text
    Micro-reactors containing a monolith-immobilised thermophilic l-aminoacylase, from Thermococcus litoralis, have been developed for use in biotransformation reactions and a study has been carried out to investigate the stereospecificity and stability of the immobilised enzyme. The potential to use the developed micro-reactors as a tool for rapid screening of enzyme specificity was demonstrated, confirming that the l-aminoacylase showed a similar substrate specificity to that previously reported of the free enzyme. From this baseline, the technique was employed as a tool to evaluate potential unreported substrates with N-benzoyl- (l-threonine, l-leucine and l-arginine) and N-acetyl- (d,l-serine, d,l-leucine, l-tyrosine and l-lysine) protecting groups. The order of preferred substrates was found to be Phe > Thr > Leu > Arg for N-benzoyl substrates and Phe ≫ Ser > Leu > Met > Tyr > Trp for N-acetyl substrates. It was found that by using the micro-reactor a significantly smaller quantity of enzyme and substrates was required. It was shown that the micro-reactors were still operational in the presence of selected organic solvents, such as ethanol, methanol, acetone, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results indicated that a combination of a small amount of an appropriate solvent (5% DMSO) and a higher reaction temperature could be employed in biotransformations where substrate solubility was an issue. © 2009 Elsevier B.V. All rights reserved

    The development and evaluation of a conducting matrix for the electrochemical regeneration of the immobilised co-factor NAD(H) under continuous flow

    No full text
    Through the preparation of a novel controlled pore glass-poly(pyrrole) material we have developed a conducting support that is not only suitable for the co-immobilisation of enzymes and co-factors, but also enables the facile electrochemical regeneration of the co-factor during a reaction. Employing the selective reduction of (rac)-2-phenylpropionaldehyde to (S)-phenyl-1-propanol as a model, we have demonstrated the successful co-immobilisation of the HLADH enzyme and co-factor NAD(H); with incorporation of the material into a continuous flow reactor facilitating the in situ electrochemical regeneration of NAD(H) for in excess of 100 h. Using this approach we have developed a reagent-less, atom efficient system applicable to the cost-effective, continuous biosynthesis of chiral compounds

    Inertial focusing of microparticles, bacteria, and blood in serpentine glass channels

    No full text
    Early detection of pathogenic microorganisms is pivotal to diagnosis and prevention of health and safety crises. Standard methods for pathogen detection often rely on lengthy culturing procedures, confirmed by biochemical assays, leading to >24 h for a diagnosis. The main challenge for pathogen detection is their low concentration within complex matrices. Detection of blood-borne pathogens via techniques such as PCR requires an initial positive blood culture and removal of inhibitory blood components, reducing its potential as a diagnostic tool. Among different label-free microfluidic techniques, inertial focusing on microscale channels holds great promise for automation, parallelization, and passive continuous separation of particles and cells. This work presents inertial microfluidic manipulation of small particles and cells (1–10 ÎŒm) in curved serpentine glass channels etched at different depths (deep and shallow designs) that can be exploited for (1) bacteria preconcentration from biological samples and (2) bacteria-blood cell separation. In our shallow device, the ability to focus Escherichia coli into the channel side streams with high recovery (89% at 2.2× preconcentration factor) could be applied for bacteria preconcentration in urine for diagnosis of urinary tract infections. Relying on differential equilibrium positions of red blood cells and E. coli inside the deep device, 97% red blood cells were depleted from 1:50 diluted blood with 54% E. coli recovered at a throughput of 0.7 mL/min. Parallelization of such devices could process relevant volumes of 7 mL whole blood in 10 min, allowing faster sample preparation for downstream molecular diagnostics of bacteria present in bloodstream
    corecore