1,100 research outputs found

    Automated migration of build scripts using dynamic analysis and search-based refactoring

    Get PDF
    The efficiency of a build system is an important factor for developer productivity. As a result, developer teams have been increasingly adopting new build systems that allow higher build parallelization. However, migrating the existing legacy build scripts to new build systems is a tedious and error-prone process. Unfortunately, there is insufficient support for automated migration of build scripts, making the migration more problematic. We propose the first dynamic approach for automated migration of build scripts to new build systems. Our approach works in two phases. First, from a set of execution traces, we synthesize build scripts that accurately capture the intent of the original build. The synthesized build scripts are typically long and hard to maintain. Second, we apply refactorings that raise the abstraction level of the synthesized scripts (e.g., introduce functions for similar fragments). As different refactoring sequences may lead to different build scripts, we use a search-based approach that explores various sequences to identify the best (e.g., shortest) build script. We optimize search-based refactoring with partial-order reduction to faster explore refactoring sequences. We implemented the proposed two phase migration approach in a tool called METAMORPHOSIS that has been recently used at Microsoft

    Induced quantum numbers in the (2+1)-dimensional electron gas

    Full text link
    A gas of electrons confined to a plane is examined in both the relativistic and nonrelativistic case. Using a (0+1)-dimensional effective theory, a remarkably simple method is proposed to calculate the spin density induced by an uniform magnetic background field. The physical properties of possible fluxon excitations are determined. It is found that while in the relativistic case they can be considered as half-fermions (semions) in that they carry half a fermion charge and half the spin of a fermion, in the nonrelativistic case they should be thought of as fermions, having the charge and spin of a fermion.Comment: 19 pages, REVTE

    Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up

    Get PDF
    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table

    Exsolution of catalytically active iridium nanoparticles from strontium titanate

    Get PDF
    The search for new functional materials that combine high stability and efficiency with reasonable cost and ease of synthesis is critical for their use in renewable energy applications. Specifically in catalysis, nanoparticles, with their high surface-to-volume ratio, can overcome the cost implications associated with otherwise having to use large amounts of noble metals. However, commercialized materials, that is, catalytic nanoparticles deposited on oxide supports, often suffer from loss of activity because of coarsening and carbon deposition during operation. Exsolution has proven to be an interesting strategy to overcome such issues. Here, the controlled emergence, or exsolution, of faceted iridium nanoparticles from a doped SrTiO3 perovskite is reported and their growth preliminary probed by in situ electron microscopy. Upon reduction of SrIr0.005Ti0.995O3, the generated nanoparticles show embedding into the oxide support, therefore preventing agglomeration and subsequent catalyst degradation. The advantages of this approach are the extremely low noble metal amount employed (∼0.5% weight) and the catalytic activity reported during CO oxidation tests, where the performance of the exsolved SrIr0.005Ti0.995O3 is compared to the activity of a commercial catalyst with 1% loading (1% Ir/Al2O3). The high activity obtained with such low doping shows the possibility of scaling up this new catalyst, reducing the high cost associated with iridium-based materials.PostprintPostprintPeer reviewe

    Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    Get PDF
    Detector-plane prototypes of the very forward calorimetry of a future detector at an e+e- collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from referee

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Development of robust metal-supported SOFCs and stack components in EU METSAPP consortium

    Get PDF
    The potential of MS-SOFCs was demonstrated through the previous EU METSOFC project, which concluded that the development of oxidation resistant novel metal-supported solid oxide fule cell (MS-SOFC) design and stack is the requirement to advance this technology to the next level. The following EU METSAPP project has been executed with an overall aim of developing advanced metal-supported cells and stacks based on a robust, reliable and up-scalable technology. During the project, oxidation resistant nanostructured anodes based on modified SrTiO3 were developed and integrated into MS-SOFCs to enhance their robustness. In addition, the manufacturing of metal-supported cells with different geometries, scalability of the manufacturing process was demonstrated and more than 200 cells with an area of ∼150 cm2 were produced. The electrochemical performance of different cell generations was evaluated and best performance and stability combination was observed with doped SrTiO3 based anode designs. Furthermore, numerical models to understand the corrosion behavior of the MS-SOFCs were developed and validated. Finally, the cost effective concept of coated metal interconnects was developed, which resulted in 90% reduction in Cr evaporation, three times lower Cr2O3 scale thickness and increased lifetime. The possibility of assembling these cells into two radically different stack designs was demonstrated

    Roadmap on inorganic perovskites for energy applications

    Get PDF
    Authors thank EPSRC (EP/P007821/1) and Low Emissions Resources Global for support.Inorganic perovskites exhibit many important physical properties such as ferroelectricity, magnetoresistance and superconductivity as well their importance as Energy Materials. Many of the most important energy materials are inorganic perovskites and find application in batteries, fuel cells, photocatalysts, catalysis, thermoelectrics and solar thermal. In all these applications, perovskite oxides, or their derivatives offer highly competitive performance, often state of the art and so tend to dominate research into energy material. In the following sections, we review these functionalities in turn seeking to facilitate the interchange of ideas between domains. The potential for improvement is explored and we highlight the importance of both detailed modelling and in situ and operando studies in taking these materials forward.Publisher PDFPeer reviewe
    corecore