694 research outputs found

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&

    X-Shooter spectroscopy of FU Tau A

    Full text link
    We have analyzed a broad-band optical and near-infrared spectrum of FU Tau A, a presumed young brown dwarf in the Taurus star forming region that has intrigued both theorists and observers by its over-luminosity in the HR diagram with respect to standard pre-main sequence evolutionary models. The new data, obtained with the X-Shooter spectrograph at the Very Large Telescope, include an unprecedented wealth of information on stellar parameters and simultaneously observed accretion and outflow indicators for FU Tau A. We present the first measurements of gravity (log g = 3.5 +- 0.5), radial velocity (RV = 22.5 +- 2.9 km/s), rotational velocity (v sin(i) = 20 +- 5 km/s) and lithium equivalent width (W_Li = 430 +- 20 mAA) for FUTau A. From the rotational velocity and the published period we infer a disk inclination of i ~ 50^deg. The lithium content is much lower than theoretically expected for such a young very low mass object, adding another puzzling feature to this object's properties. We determine the mass accretion rate of FU Tau A from comparison of the luminosities of 24 emission lines to empirical calibrations from the literature and find a mean of log (dM/dt)_acc [M_sun/yr] = -9.9 +- 0.2. The accretion rate determined independently from modeling of the excess emission in the Balmer and Paschen continua is consistent with this value. The corresponding accretion luminosity is too small to make a significant contribution to the bolometric luminosity. The existence of an outflow in FU Tau A is demonstrated through the first detection of forbidden emission lines from which we obtain an estimate for the mass loss rate, log (dM/dt)_out [M_sun/yr] < -10.4. The mass outflow and inflow rates can be combined to yield (dM/dt)_out / (dM/dt)_acc ~ 0.3, a value that is in agreement with jet launching models.Comment: 12 pages, accepted for publication in A&

    An extensive VLT/X-Shooter library of photospheric templates of pre-main sequence stars

    Get PDF
    Studies of the formation and evolution of young stars and their disks rely on the knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity to study disk evolution. Here we derive stellar properties of low-mass pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra in reduced, flux-calibrated, and corrected for telluric absorption form are made available to the community. We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-Shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction and spectral type from G5 to M8. We perform synthetic photometry on the spectra to derive the typical colors of young stars in different filters. We measure the luminosity of the emission lines present in the spectra and estimate the noise due to chromospheric emission in the measurements of accretion luminosity in accreting stars. We provide a calibration of the photospheric colors of young PMS stars as a function of their spectral type in a set of standard broad-band optical and near-infrared filters. For stars with masses of ~ 1.5Msun and ages of ~1-5 Myr, the chromospheric noise converts to a limit of measurable mass accretion rates of ~ 3x10^-10 Msun/yr.Comment: Accepted for publication on Astronomy & Astrophysics. The spectra of the photospheric templates will be uploaded to Vizier, but are already available on request. Abstract shortened for arxiv constraints. Language edited versio

    On the gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    Get PDF
    Transitional disks (TDs) are thought to be a late evolutionary stage of protoplanetary disks with dust depleted inner regions. The mechanism responsible for this depletion is still under debate. To constrain the models it is mandatory to have a good understanding of the properties of the gas content of the inner disk. Using X-Shooter broad band -UV to NIR- medium resolution spectroscopy we derive the stellar, accretion, and wind properties of a sample of 22 TDs. The analysis of these properties allows us to put strong constraints on the gas content in a region very close to the star (<0.2 AU) which is not accessible with any other observational technique. We fit the spectra with a self-consistent procedure to derive simultaneously SpT,Av,and mass accretion rates (Macc) of the targets. From forbidden emission lines we derive the wind properties of the targets. Comparing our findings to values for cTTs, we find that Macc and wind properties of 80% of the TDs in our sample, which is strongly biased towards strongly accreting objects, are comparable to those of cTTs. Thus, there are (at least) some TDs with Macc compatible with those of cTTs, irrespective of the size of the dust inner hole.Only in 2 cases Macc are much lower, while the wind properties are similar. We do not see any strong trend of Macc with the size of the dust depleted cavity, nor with the presence of a dusty optically thick disk close to the star. In the TDs in our sample there is a gas rich inner disk with density similar to that of cTTs disks. At least for some TDs, the process responsible of the inner disk clearing should allow for a transfer of gas from the outer disk to the inner region. This should proceed at a rate that does not depend on the physical mechanism producing the gap seen in the dust emission and results in a gas density in the inner disk similar to that of unperturbed disks around stars of similar mass.Comment: Accepted on Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Full text link
    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and σ\sigma-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar_{star} and the accretion luminosity (or the mass-accretion rate) over a large interval of values (Lstar_{star} 1021\sim 10^{-2} - 1 L_\odot; Lacc_{acc} 105101\sim 10^{-5} - 10^{-1} L_\odot; M˙acc\dot M_{acc} 1011107\sim 10^{-11} - 10^{-7} M_\odot/yr). The lines show the presence of a slow wind (Vpeak108V_{peak}10^8 cm3^{-3}), warm (T500010000\sim 5000-10000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from 1012\sim 10^{-12} M_\odot and 0.01\sim 0.01 AU3^3 for Mstar_{star}0.1\sim 0.1 M_\odot, to 3×1010\sim 3 \times 10^{-10} M_\odot and 1\sim 1 AU3^3 for Mstar_{star}1\sim 1 M_\odot, respectively. These results provide quite stringent constraints to wind models in low mass young stars, that need to be explored further

    Connection between jets, winds and accretion in T Tauri stars: the X-shooter view

    Get PDF
    We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12} to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.Comment: 15 pages, 14 figures, Accepted for publication in A&

    The Multitude of Molecular Hydrogen Knots in the Helix Nebula

    Get PDF
    We present HST/NICMOS imaging of the H_2 2.12 \mu m emission in 5 fields in the Helix Nebula ranging in radial distance from 250-450" from the central star. The images reveal arcuate structures with their apexes pointing towards the central star. Comparison of these images with comparable resolution ground based images reveals that the molecular gas is more highly clumped than the ionized gas line tracers. From our images, we determine an average number density of knots in the molecular gas ranging from 162 knots/arcmin^2 in the denser regions to 18 knots/arcmin^2 in the lower density outer regions. Using this new number density, we estimate that the total number of knots in the Helix to be ~23,000 which is a factor of 6.5 larger than previous estimates. The total neutral gas mass in the Helix is 0.35 M_\odot assuming a mass of \~1.5x10^{-5} M_\odot for the individual knots. The H_2 intensity, 5-9x10^{-5} erg s^{-1} cm^{-2} sr^{-1}, remains relatively constant with projected distance from the central star suggesting a heating mechanism for the molecular gas that is distributed almost uniformly in the knots throughout the nebula. The temperature and H_2 2.12 \mu m intensity of the knots can be approximately explained by photodissociation regions (PDRs) in the individual knots; however, theoretical PDR models of PN under-predict the intensities of some knots by a factor of 10.Comment: 26 pages, 3 tables, 10 figures; AJ accepte

    The IC1396N proto-cluster at a scale of 250 AU

    Full text link
    We investigate the mm-morphology of IC1396N with unprecedented spatial resolution to analyze its dust and molecular gas properties, and draw comparisons with objects of similar mass. We have carried out sensitive observations in the most extended configurations of the IRAM Plateau de Bure interferometer, to map the thermal dust emission at 3.3 and 1.3mm, and the emission from the JJ=13k12k_k\to12_k hyperfine transitions of methyl cyanide (CH3_3CN). We unveil the existence of a sub-cluster of hot cores in IC1396N, distributed in a direction perpendicular to the emanating outflow. The cores are embedded in a common envelope of extended and diffuse dust emission. We find striking differences in the dust properties of the cores (β\beta\simeq 0) and the surrounding envelope (β\beta\simeq 1), very likely testifying to differences in the formation and processing of dust material. The CH3_3CN emission peaks towards the most massive hot core and is marginally extended in the outflow direction
    corecore