2,947 research outputs found

    Universal features of electron-phonon interactions in atomic wires

    Full text link
    The effect of electron-phonon interactions in the conductance through metallic atomic wires is theoretically analyzed. The proposed model allows to consider an atomic size region electrically and mechanically coupled to bulk electrodes. We show that under rather general conditions the features due to electron-phonon coupling are described by universal functions of the system transmission coefficients. It is predicted that the reduction of the conductance due to electron-phonon coupling which is observed close to perfect transmission should evolve into an enhancement at low transmission. This crossover can be understood in a transparent way as arising from the competition between elastic and inelastic processes.Comment: 5 pages, 5 figure

    Four Dimensional CFT Models with Rational Correlation Functions

    Get PDF
    Recently established rationality of correlation functions in a globally conformal invariant quantum field theory satisfying Wightman axioms is used to construct a family of soluble models in 4-dimensional Minkowski space-time. We consider in detail a model of a neutral scalar field ϕ\phi of dimension 2. It depends on a positive real parameter c, an analogue of the Virasoro central charge, and admits for all (finite) c an infinite number of conserved symmetric tensor currents. The operator product algebra of ϕ\phi is shown to coincide with a simpler one, generated by a bilocal scalar field V(x1,x2)V(x_1,x_2) of dimension (1,1). The modes of V together with the unit operator span an infinite dimensional Lie algebra LVL_V whose vacuum (i.e. zero energy lowest weight) representations only depend on the central charge c. Wightman positivity (i.e. unitarity of the representations of LVL_V) is proven to be equivalent to c∈Nc \in N.Comment: 28 pages, LATEX, amsfonts, latexsym. Proposition 2.3, and Conjecture in Sec. 6 are revised. Minor errors are correcte

    Influence of Magnetism on Phonons in CaFe2As2 Via Inelastic X-ray Scattering

    Full text link
    In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin polarized calculations imposing the antiferromagnetic order present in the low temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.Comment: 4 pages, 3 figures; added additional information and references about spin fluctuation

    Conformal invariance: from Weyl to SO(2,d)

    Full text link
    The present work deals with two different but subtilely related kinds of conformal mappings: Weyl rescaling in d>2d>2 dimensional spaces and SO(2,d) transformations. We express how the difference between the two can be compensated by diffeomorphic transformations. This is well known in the framework of String Theory but in the particular case of d=2d=2 spaces. Indeed, the Polyakov formalism describes world-sheets in terms of two-dimensional conformal field theory. On the other hand, B. Zumino had shown that a classical four-dimensional Weyl-invariant field theory restricted to live in Minkowski space leads to an SO(2,4)-invariant field theory. We extend Zumino's result to relate Weyl and SO(2,d) symmetries in arbitrary conformally flat spaces (CFS). This allows us to assert that a classical SO(2,d)SO(2,d)-invariant field does not distinguish, at least locally, between two different dd-dimensional CFSs.Comment: 5 pages, no figures. There are slight modifications to match with the published versio

    Inelastic quantum transport: the self-consistent Born approximation and correlated electron-ion dynamics

    Get PDF
    A dynamical method for inelastic transport simulations in nanostructures is compared with a steady-state method based on non-equilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born Approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations, where differences begin to emerge.Comment: 12 pages, 7 figure

    Jacobi Identity for Vertex Algebras in Higher Dimensions

    Full text link
    Vertex algebras in higher dimensions provide an algebraic framework for investigating axiomatic quantum field theory with global conformal invariance. We develop further the theory of such vertex algebras by introducing formal calculus techniques and investigating the notion of polylocal fields. We derive a Jacobi identity which together with the vacuum axiom can be taken as an equivalent definition of vertex algebra.Comment: 35 pages, references adde

    Elliptic Thermal Correlation Functions and Modular Forms in a Globally Conformal Invariant QFT

    Full text link
    Global conformal invariance (GCI) of quantum field theory (QFT) in two and higher space-time dimensions implies the Huygens' principle, and hence, rationality of correlation functions of observable fields (see Commun. Math. Phys. 218 (2001) 417-436; hep-th/0009004). The conformal Hamiltonian HH has discrete spectrum assumed here to be finitely degenerate. We then prove that thermal expectation values of field products on compactified Minkowski space can be represented as finite linear combinations of basic (doubly periodic) elliptic functions in the conformal time variables (of periods 1 and τ\tau) whose coefficients are, in general, formal power series in q1/2=eiπτq^{1/2}=e^{i\pi\tau} involving spherical functions of the "space-like" fields' arguments. As a corollary, if the resulting expansions converge to meromorphic functions, then the finite temperature correlation functions are elliptic. Thermal 2-point functions of free fields are computed and shown to display these features. We also study modular transformation properties of Gibbs energy mean values with respect to the (complex) inverse temperature τ\tau (Im(τ)=β/(2π)>0Im(\tau)=\beta/(2\pi)>0). The results are used to obtain the thermodynamic limit of thermal energy densities and correlation functions.Comment: LaTex. 56 pages. The concept of global conformal invariance set in a historical perspective (new Sect. 1.1 in the Introduction), references added; minor corrections in the rest of the pape

    Dissipative structure formation in cold-rolled Fe and Ni during heavy ion irradiation

    Full text link
    We report 4-probe resistivity measurements of cold-rolled Ni and Fe during 100 MeV oxygen ion irradiation, at 300K. The resistivity shows increase and saturation, marked by jumps. Employing 200 MeV silver ion irradiation of Fe and Si(100) and topographically identifying strain at an artificial interface in the latter, we assign the resistivity behavior to atomic rearrangements arising from dissipation of incident ion energy at internal interfaces of Ni and Fe, with positive feedback.}Comment: RevTex+ 7 Postscript figures; Fig 2 (topograph) available on demand to [email protected]. To appear in Phys Rev Let
    • …
    corecore