8,304 research outputs found

    International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach

    Full text link
    This paper develops a non-Bayesian methodology to analyze the time-varying structure of international linkages and market efficiency in G7 countries. We consider a non-Bayesian time-varying vector autoregressive (TV-VAR) model, and apply it to estimate the joint degree of market efficiency in the sense of Fama (1970, 1991). Our empirical results provide a new perspective that the international linkages and market efficiency change over time and that their behaviors correspond well to historical events of the international financial system.Comment: 21 pages, 2 tables, 6 figure

    Cd3As2 is Centrosymmetric

    Full text link
    This is a revised version of a manuscript that was originally posted here in February of 2014. It has been accepted at the journal Inorganic Chemistry after reviews that included those of two crystallographers who made sure all the t's were crossed and the i's were dotted. The old work (from 1968) that said that Cd3As2 was noncentrosymmetric was mistaken, with the authors of that study making a type of error that in the 1980s became infamous in crystallography. As a result of the increased scrutiny of the issue of centrosymmetricity of the 1980's, there are now much better analysis tools to resolve the issue fully, and its important to understand that not just our crystals are centrosymmetric, even the old guy's crystals were centrosymmetric (and by implication everyone's are). There is no shame in having made that error back in the day and those authors would not find the current centrosymmetric result controversial; their paper is excellent in all other aspects. This manuscript describes how the structure is determined, explains the structure schematically, calculates the electronic structure based on the correct centrosymmetric crystal structure, and gives the structural details that should be used for future analysis and modeling.Comment: Accepted by ACS Inorganic Chemistr

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.

    Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy

    Full text link
    We have performed x-ray absorption spectroscopy (XAS) measurements on a series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2, Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line" features observed at the Ir L2 and L3 absorption edges, it is possible to extract valuable information about the strength of the spin-orbit coupling in these systems. We observe remarkably large, non-statistical branching ratios in all Ir compounds studied, with little or no dependence on chemical composition, crystal structure, or electronic state. This result confirms the presence of strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3, and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure

    In vivo anomalous diffusion and weak ergodicity breaking of lipid granules

    Full text link
    Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.Comment: 4 pages, 4 figures, REVTeX. Supplementary Material. Physical Review Letters, at pres

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte

    Superconducting and normal state properties of the systems La1−xMxPt4Ge12 (M=Ce,Th)

    Get PDF
    Electrical resistivity, magnetization, and specific heat measurements were performed on polycrystalline samples of the filled-skutterudite systems La1−xMxPt4Ge12 (M = Ce and Th). Superconductivity in LaPt4Ge12 was quickly suppressed with Ce substitution and no evidence for superconductivity was found down to 1.1 K for x \u3e 0.2. Temperature-dependent specific heat data at low temperatures for La1−xCexPt4Ge12 show a change from powerlaw to exponential behavior, which may be an indication for multiband superconductivity in LaPt4Ge12. A similar crossover was observed in the Pr1−xCexPt4Ge12 system. However, the suppression rates of the superconducting transition temperatures Tc(x) in the two systems are quite disparate, indicating a difference in the nature of superconductivity, which is conventional in LaPt4Ge12 and unconventional in PrPt4Ge12. In comparison, a nearly linear and smooth evolution of Tc with increasing Th was observed in the La1−xThxPt4Ge12 system, with no change of the superconducting energy gap in the temperature dependence of the specific heat, suggesting similar types of superconductivity in both the LaPt4Ge12 and ThPt4Ge12 compounds

    Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12−xSbx

    Get PDF
    We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12−xSbx . Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4, above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3, suggesting that superconductivity may depend on the density of electronic states in this system. The specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. We observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature ΘE ∼ 60 K for 0 ≤ x ≤ 5; however, the rattling mode may not play any role in suppressing superconductivity

    Scale for the Phase Diagram of Quantum Chromodynamics

    Full text link
    Matter described by Quantum Chromodynamics (QCD), the theory of strong interactions, may undergo phase transitions when its temperature and the chemical potentials are varied. QCD at finite temperature is studied in the laboratory by colliding heavy-ions at varying beam energies. We present a test of QCD in the non-perturbative domain through a comparison of thermodynamic fluctuations predicted in lattice computations with the experimental data of baryon number distributions in high-energy heavy-ion collisions. This study provides evidence for thermalization in these collisions, and allows us to find the crossover temperature between normal nuclear matter and a deconfined phase called the quark gluon plasma. This value allows us to set a scale for the phase diagram of QCD.Comment: 16 pages and 4 figures. Accepted for publication in Scienc

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.
    corecore