2,389 research outputs found

    Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN

    Full text link
    Using first principles calculations based on density functional theory, we show that the stability and magnetic properties of small Mn clusters can be fundamentally altered by the presence of nitrogen. Not only are their binding energies substantially enhanced, but also the coupling between the magnetic moments at Mn sites remains ferromagnetic irrespective of their size or shape. In addition, these nitrogen stabilized Mn clusters carry giant magnetic moments ranging from 4 Bohr magnetons in MnN to 22 Bohr magnetons in Mn_5N. It is suggested that the giant magnetic moments of Mn_xN clusters may play a key role in the ferromagnetism of Mn doped GaN which exhibit a wide range (10K - 940K) of Curie temperatures

    A Certain Class of Statistical Deferred Weighted A-summability Based on (p; q)-integers and Associated Approximation Theorems

    Get PDF
    Statistical summability has recently enhanced researchers’ substantial awareness since it is more broad than the traditional (ordinary) convergence. The basic concept of statistical weighted A- summability was introduced by Mohiuddine (2016). In this investigation, we introduce the (presumably new) concept of statistical deferred weighted A-summability and deferred weighted A- statistical convergence with respect to the difference sequence of order r involving (p; q)-integers and establish an inclusion relation between them. Furthermore, based upon the proposed methods, we intend to approximate the rate of convergence and to demonstrate a Korovkin type approximation theorem for functions of two variables defined on a Banach space CB(D). Finally, several illustrative examples are presented in light of our definitions and outcomes established in this paper

    Geometry, electronic structure, and energetics of copper-doped aluminum clusters

    Get PDF
    Using density functional theory and generalized gradient approximation for exchange-correlation potential, we have calculated the equilibrium geometries and energetics of neutral and negatively charged AlnCu (n=11,12,13,14) clusters. Unlike the alkali atom-doped aluminum clusters in the same size range, the copper atom resides inside the aluminum cluster cage. Furthermore, the 3d and 4s energy levels of Cu hybridize with the valence electrons of Al causing a redistribution of the molecular orbital energy levels of the Aln clusters. However, this redistribution does not affect the magic numbers of AlnCu clusters that could be derived by assuming that Cu donates one electron to the valence levels of Aln clusters. This behavior, brought about by the smaller size and large ionization potential of the copper atom, contributes to the anomalous properties of AlnCu− anions: Unlike AlnX− (X=alkali atom), the mass ion intensities of AlnCu− are similar to those of Al−n. The calculated adiabatic electron affinities are also in very good agreement with experiment

    Electronic structure and chemical bonding of 3d-metal dimers ScX, X=Sc-Zn

    Get PDF
    The electronic and geometrical structures of the ground and excited states of the homonuclear Sc2, mixed ScTi, ScV, ScCr, ScMn, ScFe, ScCo, ScNi, ScCu, and ScZn 3d-metal dimers and their anions have been calculated using the density functional theory with generalized gradient approximation for the exchange-correlation potential. The ground states of the neutral dimers are found to be 5Σ−u (Sc2), 6Σ+ (ScTi), 7Σ+ (ScV), 4Σ+ (ScCr), 3Σ+ (ScMn), 2Δ(ScFe), 1Σ+ (ScCo), 2Σ+ (ScNi), 3Δ(ScCu), and 4Σ+ (ScZn). A natural bond analysis reveals an antiferrimagnetic spin coupling in the ground states of ScCr, ScMn, and ScFe. This is due to the electron transfer from Sc to the opposite atom and specific bond formations. While each dimer has a unique chemical bonding pattern, most curious is the localization of two 4s electrons at both atomic sites in the ground 5Σ−u state of Sc2, which leads to formation of two lone pairs and the bonding scheme: (3d+3d)3α(4s+4s)1β. No appreciable sd hybridization is found for the ground states of the ScX dimers except for ScNi. Even though the electron affinities of the ScX dimers are relatively low and do not exceed 1 eV, each ScX− (except ScCo−) possesses at least two states stable towards detachment of an extra electron

    Phase transition and hybrid star in a SU(2) chiral sigma model

    Get PDF
    We use a modified SU(2) chiral sigma model to study nuclear matter at high density using mean field approach. We also study the phase transition of nuclear matter to quark matter in the interior of highly dense neutron stars. Stable solutions of Tolman-Oppenheimer-Volkoff equations representing hybrid stars are obtained with a maximum mass of 1.69 M⊙M_{\odot}, radii around 9.3 kms and a quark matter core constituting nearly 55-85 % of the star radii.Comment: 19 pages, 9 figures, accepted for Mod. Phys. Letts.

    Anisotropic charge transport in non-polar GaN QW: polarization induced charge and interface roughness scattering

    Full text link
    Charge transport in GaN quantum well (QW) devices grown in non-polar direction has been theoretically investigated . Emergence of anisotropic line charge scattering mechanism originating as a result of anisotropic rough surface morphology in conjunction with in-plane built-in polarization has been proposed. It has shown that in-plane growth anisotropy leads to large anisotropic carrier transport at low temperatures. At high temperatures, this anisotropy in charge transport is partially washed out by strong isotropic optical phonon scattering in GaN QW.Comment: 4 pages, 4 figure

    Atomic and electronic structure of neutral and charged SinOm clusters

    Get PDF
    Using molecular orbital approach and the generalized gradient approximation in the density functional theory, we have calculated the equilibrium geometries, binding energies, ionization potentials, and vertical and adiabatic electron affinities of SinOm clusters (n⩽6,m⩽12). The calculations were carried out using both Gaussian and numerical form for the atomic basis functions. Both procedures yield very similar results. The bonding in SinOm clusters is characterized by a significant charge transfer between the Si and O atoms and is stronger than in conventional semiconductor clusters. The bond distances are much less sensitive to cluster size than seen for metallic clusters. Similarly, calculated energy gaps between the highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) of (SiO2)n clusters increase with size while the reverse is the norm in most clusters. The HOMO-LUMO gap decreases as the oxygen content of a SinOm cluster is lowered eventually approaching the visible range. The photoluminescence and strong size dependence of optical properties of small silica clusters could thus be attributed to oxygen defects
    • …
    corecore