65 research outputs found

    A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules

    Get PDF
    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small-molecule–protein interactions

    A Collective Variable for the Rapid Exploration of Protein Druggability

    Get PDF
    An efficient molecular simulation methodology has been developed for the evaluation of the druggability (ligandability) of a protein. Previously proposed techniques were designed to assess the druggability of crystallographic structures and cannot be tightly coupled to molecular dynamics (MD) simulations. By contrast, the present approach, JEDI (<u>J</u>ust <u>E</u>xploring <u>D</u>ruggability at protein <u>I</u>nterfaces), features a druggability potential made of a combination of empirical descriptors that can be collected “on-the-fly” during MD simulations. Extensive validation studies indicate that JEDI analyses discriminate druggable and nondruggable protein binding site conformations with accuracy similar to alternative methodologies, and at a fraction of the computational cost. Since the JEDI function is continuous and differentiable, the druggability potential can be used as collective variable to rapidly detect cryptic druggable binding sites in proteins with a variety of MD free energy methods. Protocols for applications to flexible docking problems are outlined

    Studies on the Configurational Stability of Tropolone-Ketone‑, Ester‑, and Aldehyde-Based Chiral Axes

    No full text
    Recent studies have revealed that tropolone-amide aryl C–C­(O) rotational barriers are dramatically higher than those of analogous benzamide-based systems, and as a result, they have an increased likelihood of displaying high configurational stability. Studies on other tropolone-based chiral axes are important to assess the generality of this phenomenon. Herein, we describe a series of studies on the rotational barriers of tropolone-ketone, tropolone-ester, and tropolone-aldehyde chiral axes. These studies are complemented with computational modeling of the dynamics of these and analogous benzenoid variants to illuminate the impact that tropolone may have on aryl–C­(O) configurational stability

    Studies on the Configurational Stability of Tropolone-Ketone‑, Ester‑, and Aldehyde-Based Chiral Axes

    No full text
    Recent studies have revealed that tropolone-amide aryl C–C­(O) rotational barriers are dramatically higher than those of analogous benzamide-based systems, and as a result, they have an increased likelihood of displaying high configurational stability. Studies on other tropolone-based chiral axes are important to assess the generality of this phenomenon. Herein, we describe a series of studies on the rotational barriers of tropolone-ketone, tropolone-ester, and tropolone-aldehyde chiral axes. These studies are complemented with computational modeling of the dynamics of these and analogous benzenoid variants to illuminate the impact that tropolone may have on aryl–C­(O) configurational stability
    corecore