3 research outputs found
On information resolution of radar systems
In target detection and tracking, the resolvability of multiple closely spaced targets of the sensor measurement is an important criterion for measuring the sensing ability of sensor systems like radar and sonar. The concept of information resolution for a sensor measurement system, which is defined in the framework of information geometry, is introduced. In particular, the information resolution of radar/sonar systems is generalised from the work on existing radar resolution pioneered by Woodward, et al. [1, 2] and defined on statistical manifolds where the intrinsic geometrical structure of both waveform, measurement, and noise models of the underlying sensing devices are conveniently characterized in terms of the Fisher information metric. This work is motivated by the fact that existing radar resolution identifies the ambiguities of the underlying waveforms regardless of the influence of noise but the latter often has significant contributions to outcomes such as target detection and tracking, radar imaging, etc. To this end, information resolution provides a unified statistical measure for the capability of sensing devices for a given application. Examples of basic radar measurements are presented to highlight the importance of information resolution for measurement systems in practical applications. © 2011 IEEE
Investigating a clinically actionable BRAF mutation for monitoring low-grade serous ovarian cancer: a case report
Low-grade serous ovarian cancer (LGSOC) poses a specific clinical challenge due to advanced presentation at diagnosis and the lack of effective systemic treatments. The aim of this study was to use a precision medicine approach to identify clinically actionable mutations in a patient with recurrent LGSOC. Primary, metastatic and recurrence tissue, and blood samples were collected from a stage IV LGSOC patient. Single-gene testing for clinically actionable mutations (BRAF V600, KRAS and NRAS) and subsequent whole-exome sequencing (WES) were performed. Droplet digital PCR was used to evaluate the presence of an identified BRAF D594G mutation in the matched plasma cell-free DNA (cfDNA). No clinically actionable mutations were identified using single-gene testing. WES identified a BRAF D594G mutation in six of seven tumor samples. The patient was commenced on a MEK inhibitor, trametinib, but with minimal clinical response. A newly designed ddPCR assay detected the BRAF alteration in the matched tissues and liquid biopsy cfDNA. The identification and sensitive plasma detection of a common “druggable” target emphasises the impact of precision medicine on the management of rare tumors and its potential contribution to novel monitoring regimens in this field
The role of infiltrating lymphocytes in the neo-adjuvant treatment of women with HER2-positive breast cancer
Background: Pre-treatment tumour-associated lymphocytes (TILs) and stromal lymphocytes (SLs) are independent predictive markers of future pathological complete response (pCR) in HER2-positive breast cancer. Whilst studies have correlated baseline lymphocyte levels with subsequent pCR, few have studied the impact of neoadjuvant therapy on the immune environment.
Methods: We performed TIL analysis and T-cell analysis by IHC on the pretreatment and 'On-treatment' samples from patients recruited on the Phase-II TCHL (NCT01485926) clinical trial. Data were analysed using the Wilcoxon signed-rank test and the Spearman rank correlation.
Results: In our sample cohort (n = 66), patients who achieved a pCR at surgery, post-chemotherapy, had significantly higher counts of TILs (p = 0.05) but not SLs (p = 0.08) in their pre-treatment tumour samples. Patients who achieved a subsequent pCR after completing neo-adjuvant chemotherapy had significantly higher SLs (p = 9.09 Ă— 10-3) but not TILs (p = 0.1) in their 'On-treatment' tumour biopsies. In a small cohort of samples (n = 16), infiltrating lymphocyte counts increased after 1 cycle of neo-adjuvant chemotherapy only in those tumours of patients who did not achieve a subsequent pCR. Finally, reduced CD3 + (p = 0.04, rho = 0.60) and CD4 + (p = 0.01, rho = 0.72) T-cell counts in 'On-treatment' biopsies were associated with decreased residual tumour content post-1 cycle of treatment; the latter being significantly associated with increased likelihood of subsequent pCR (p
Conclusions: The immune system may be 'primed' prior to neoadjuvant treatment in those patients who subsequently achieve a pCR. In those patients who achieve a pCR, their immune response may return to baseline after only 1 cycle of treatment. However, in those who did not achieve a pCR, neo-adjuvant treatment may stimulate lymphocyte influx into the tumour.</p