7,819 research outputs found

    Detecting filaments at z=3

    Get PDF
    We present the detection of a filament of Ly-alpha emitting galaxies in front of the quasar Q1205-30 at z=3.04 based on deep narrow band imaging and follow-up spectroscopy obtained at the ESO NTT and VLT. We argue that Ly-alpha selection of high redshift galaxies with relatively modest amounts of observing time allows the detection and redshift measurement of galaxies with sufficiently high space densities that we can start to map out the large scale structure at z=2-3 directly. Even more interesting is it that a 3D map of the filaments will provide a new cosmological test for the value of the cosmological constant, Omega_Lambda.Comment: 7 pages, 4 figures, contribution to the procedings of the conference ``Lighthouses of the Universe'' held in Garching (Germany), August 200

    Gravitational Lensing of the SDSS High-Redshift Quasars

    Full text link
    We predict the effects of gravitational lensing on the color-selected flux-limited samples of z~4.3 and z>5.8 quasars, recently published by the Sloan Digital Sky Survey (SDSS). Our main findings are: (i) The lensing probability should be 1-2 orders of magnitude higher than for conventional surveys. The expected fraction of multiply-imaged quasars is highly sensitive to redshift and the uncertain slope of the bright end of the luminosity function, beta_h. For beta_h=2.58 (3.43) we find that at z~4.3 and i*<20.0 the fraction is ~4% (13%) while at z~6 and z*<20.2 the fraction is ~7% (30%). (ii) The distribution of magnifications is heavily skewed; sources having the redshift and luminosity of the SDSS z>5.8 quasars acquire median magnifications of med(mu_obs)~1.1-1.3 and mean magnifications of ~5-50. Estimates of the quasar luminosity density at high redshift must therefore filter out gravitationally-lensed sources. (iii) The flux in the Gunn-Peterson trough of the highest redshift (z=6.28) quasar is known to be f_lambda<3 10^-19 erg/sec/cm^2/Angstrom. Should this quasar be multiply imaged, we estimate a 40% chance that light from the lens galaxy would have contaminated the same part of the quasar spectrum with a higher flux. Hence, spectroscopic studies of the epoch of reionization need to account for the possibility that a lens galaxy, which boosts the quasar flux, also contaminates the Gunn-Peterson trough. (iv) Microlensing by stars should result in ~1/3 of multiply imaged quasars in the z>5.8 catalog varying by more than 0.5 magnitudes over the next decade. The median equivalent width would be lowered by ~20% with respect to the intrinsic value due to differential magnification of the continuum and emission-line regions.Comment: 27 pages, 10 figures. Expansion on the discussion in astro-ph/0203116. Replaced with version accepted for publication in Ap

    Walter Campbell:A distinguished life

    Get PDF
    An efficient and simple synthesis approach to form stable (68) Ga-labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self-assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well-defined spherical shape with a diameter of 290 +/- 50 nm. The radionuclide (68) Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these (68) Ga-nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging

    Constraints on (Omega_m,Omega_Lambda) using distributions of inclination angles for high redshift filaments

    Full text link
    In this paper we present a scale free method to determine the cosmological parameters (Omega_m, Omega_Lambda). The method is based on the requirement of isotropy of the distribution of orientations of cosmological filaments. The current structure formation paradigm predicts that the first structures to form are voids and filaments, causing a web-like structure of the matter distribution at high redshifts. Recent observational evidence suggests that the threads, or filaments, of the cosmic web most easily are mapped in Ly-alpha emission. We describe how such a 3D map can be used to constrain the cosmological parameters in a way which, contrary to most other cosmological tests, does not require the use of a standard rod or a standard candle. We perform detailed simulations in order to define the optimal survey parameters for the definition of an observing programme aimed to address this test, and to investigate how statistical and observational errors will influence the results. We conclude that observations should target filaments of comoving size 15-50 Mpc in the redshift range 2-4, and that each filament must be defined by at least four Ly-alpha emitters. Detection of 20 filaments will be sufficient to obtain a result, while 50 filaments will make it possible to place significant new constraints on the values of Omega_m and Omega_Lambda permitted by the current supernova observations. In a future paper we study how robust these conclusions are to systematic velocities in the survey box.Comment: 8 pages, 6 figures, accepted for publication in A&

    The Article III Party and the Originalist Case Against Corporate Diversity Jurisdiction

    Full text link
    Federal courts control an outsize share of big-ticket corporate litigation. And that control rests, to a significant degree, on the Supreme Court’s extension of Article III’s Diversity of Citizenship Clause to corporations. Yet, critics have questioned the constitutionality of corporate diversity jurisdiction from the beginning. In this Article and a previous one, we develop the first sustained critique of corporate diversity jurisdiction. Our previous article demonstrated that corporations are not “citizens” given the original meaning of that word. But we noted this finding alone doesn’t sink general corporate diversity jurisdiction. The ranks of corporate shareholders include many undoubted “citizens.” And so corporate litigants might preserve their access to diversity jurisdiction if that jurisdiction can vest through diverse shareholder citizenship. In this Article, we consider whether corporations can indeed preserve access to diversity jurisdiction through this route. We conclude they cannot. From an originalist perspective, shareholders are not parties to Article III “controversies” that proceed in the corporate name. In such controversies, shareholder citizenship cannot establish diversity jurisdiction. The result of our analysis is that corporations are not citizens, and they normally can’t use shareholder citizenship to access diversity jurisdiction either. It follows that general corporate diversity jurisdiction is not authorized by the constitutional text

    Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis

    Full text link
    We present a computer program which solves the Schrodinger equation of the stationary states for an average nuclear potential of Woods-Saxon type. In this work, we take specifically into account triaxial (i.e. ellipsoidal) nuclear surfaces. The deformation is specified by the usual Bohr parameters. The calculations are carried out in two stages. In the first, one calculates the representative matrix of the Hamiltonian in the cartesian oscillator basis. In the second stage one diagonalizes this matrix with the help of subroutines of the EISPACK library. If it is wished, one can calculate all eigenvalues, or only the part of the eigenvalues that are contained in a fixed interval defined in advance. In this latter case the eigenvectors are given conjointly. The program is very rapid, and the run-time is mainly used for the diagonalization. Thus, it is possible to use a significant number of the basis states in order to insure a best convergence of the results.Comment: no figures, but tbles in separate pdf file

    The Eastwood-Singer gauge in Einstein spaces

    Full text link
    Electrodynamics in curved spacetime can be studied in the Eastwood--Singer gauge, which has the advantage of respecting the invariance under conformal rescalings of the Maxwell equations. Such a construction is here studied in Einstein spaces, for which the Ricci tensor is proportional to the metric. The classical field equations for the potential are then equivalent to first solving a scalar wave equation with cosmological constant, and then solving a vector wave equation where the inhomogeneous term is obtained from the gradient of the solution of the scalar wave equation. The Eastwood--Singer condition leads to a field equation on the potential which is preserved under gauge transformations provided that the scalar function therein obeys a fourth-order equation where the highest-order term is the wave operator composed with itself. The second-order scalar equation is here solved in de Sitter spacetime, and also the fourth-order equation in a particular case, and these solutions are found to admit an exponential decay at large time provided that square-integrability for positive time is required. Last, the vector wave equation in the Eastwood-Singer gauge is solved explicitly when the potential is taken to depend only on the time variable.Comment: 13 pages. Section 6, with new original calculations, has been added, and the presentation has been improve
    • …
    corecore