2,111 research outputs found

    Energy of gravitational radiation in plane-symmetric space-times

    Full text link
    Gravitational radiation in plane-symmetric space-times can be encoded in a complex potential, satisfying a non-linear wave equation. An effective energy tensor for the radiation is given, taking a scalar-field form in terms of the potential, entering the field equations in the same way as the matter energy tensor. It reduces to the Isaacson energy tensor in the linearized, high-frequency approximation. An energy conservation equation is derived for a quasi-local energy, essentially the Hawking energy. A transverse pressure exerted by interacting low-frequency gravitational radiation is predicted.Comment: 7 REVTeX4 page

    Four Dimensional Supergravity from String Theory

    Full text link
    A derivation of N=1 supergravity action from string theory is presented. Starting from a Nambu-Goto bosonic string, matter field is introduced to obtain a superstring in four dimension. The excitation quanta of this string contain graviton and the gravitino. Using the principle of equivalence, the action in curved space time are found and the sum of them is the Deser-Zumino N=1 supergravity action. The energy tensor is Lorentz invariant due to supersymmetry.Comment: 9 page

    Point Charge Self-Energy in the General Relativity

    Full text link
    Singularities in the metric of the classical solutions to the Einstein equations (Schwarzschild, Kerr, Reissner -- Nordstr\"om and Kerr -- Newman solutions) lead to appearance of generalized functions in the Einstein tensor that are not usually taken into consideration. The generalized functions can be of a more complex nature than the Dirac \d-function. To study them, a technique has been used based on a limiting solution sequence. The solutions are shown to satisfy the Einstein equations everywhere, if the energy-momentum tensor has a relevant singular addition of non-electromagnetic origin. When the addition is included, the total energy proves finite and equal to mc2mc^2, while for the Kerr and Kerr--Newman solutions the angular momentum is mcamc {\bf a}. As the Reissner--Nordstr\"om and Kerr--Newman solutions correspond to the point charge in the classical electrodynamics, the result obtained allows us to view the point charge self-energy divergence problem in a new fashion.Comment: VI Fridmann Seminar, France, Corsica, Corgeze, 2004, LaTeX, 6 pages, 2 fige

    Fields in Nonaffine Bundles. I. The general bitensorially covariant differentiation procedure

    Full text link
    The standard covariant differentiation procedure for fields in vector bundles is generalised so as to be applicable to fields in general nonaffine bundles in which the fibres may have an arbitrary nonlinear structure. In addition to the usual requirement that the base space should be flat or endowed with its own linear connection, and that there should be an ordinary gauge connection on the bundle, it is necessary to require also that there should be an intrinsic, bundle-group invariant connection on the fibre space. The procedure is based on the use of an appropriate primary-field (i.e. section) independent connector that is constructed in terms of the natural fibre-tangent-vector realisation of the gauge connection. The application to gauged harmonic mappings will be described in a following article.Comment: 17 page Latex file with some minor misprint corrections and added color for article originally published in black and whit

    Evolution of a black hole-inhabited brane close to reconnection

    Full text link
    Last moments of a mini black hole escaping from a brane are studied. It is argued that at the point of reconnection, where the piece of the brane attached to the black hole separates from the rest, the worldsheet of the brane becomes isotropic (light-like). The degenerate mode of evolution, with the worldsheet isotropic everywhere, is investigated. In particular, it is shown that the brane approaches the reconnection point from below if it reconnects within a certain limit distance, and from above if it reconnects beyond that distance. The rate of relaxation to the degenerate mode is established. If the dimension of the brane is pp, the nondegeneracy, measured by the determinant of the relevant part of the induced metric tensor, falls down as (latitudinal angle)2(p1)^{2(p - 1)}.Comment: 20 pages, 4 figure

    Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO)

    Full text link
    We show that a recent claim that matter wave interferometers have a much higher sensitivity than laser interferometers for a comparable physical setup is unfounded. We point out where the mistake in the earlier analysis is made. We also disprove the claim that only a description based on the geodesic deviation equation can produce the correct physical result. The equations for the quantum dynamics of non-relativistic massive particles in a linearly perturbed spacetime derived here are useful for treating a wider class of related physical problems. A general discussion on the use of atom interferometers for the detection of gravitational waves is also provided.Comment: 16 pages, REVTeX4; minor changes, one figure and a few references were added, an additional appendix was included where we explain why, contrary to the claims in gr-qc/0409099, the effects due to the reflection off the mirrors cancel out in the final result for the phase shif

    Quantum Perfect-Fluid Kaluza-Klein Cosmology

    Full text link
    The perfect fluid cosmology in the 1+d+D dimensional Kaluza-Klein spacetimes for an arbitrary barotropic equation of state p=nρp= n \rho is quantized by using the Schutz's variational formalism. We make efforts in the mathematics to solve the problems in two cases. For the first case of the stiff fluid n=1n=1 we exactly solve the Wheeler-DeWitt equation when the dd space is flat. After the superposition of the solutions we analyze the Bohmian trajectories of the final-stage wave-packet functions and show that the flat dd spaces and the compact DD spaces will eventually evolve into finite scale functions. For the second case of n1n \approx 1, we use the approximated wavefunction in the Wheeler-DeWitt equation to find the analytic forms of the final-stage wave-packet functions. After analyzing the Bohmian trajectories we show that the flat dd spaces will be expanding forever while the scale function of the contracting DD spaces would not become zero within finite time. Our investigations indicate that the quantum effect in the quantum perfect-fluid cosmology could prevent the extra compact DD spaces in the Kaluza-Klein theory from collapsing into a singularity or that the "crack-of-doom" singularity of the extra compact dimensions is made to occur at t=t=\infty.Comment: Latex 18 pages, add section 2 to introduce the quantization of perfect flui

    Spinor fields without Lorentz frames in curved spacetime using complexified quaternions

    Full text link
    Using complexified quaternions, a formalism without Lorentz frames, and therefore also without vierbeins, for dealing with tensor and spinor fields in curved spacetime is presented. A local U(1) gauge symmetry, which, it is speculated, might be related to electromagnetism, emerges naturally.Comment: 14 pages; v2: minor corrections; v3: note added concerning unified treatment of local Lorentz transformations and local U(1) gauge transformations; v4: published in J. Math. Phys. 50 083507 (2009

    Chaotic string-capture by black hole

    Full text link
    We consider a macroscopic charge-current carrying (cosmic) string in the background of a Schwarzschild black hole. The string is taken to be circular and is allowed to oscillate and to propagate in the direction perpendicular to its plane (that is parallel to the equatorial plane of the black hole). Nurmerical investigations indicate that the system is non-integrable, but the interaction with the gravitational field of the black hole anyway gives rise to various qualitatively simple processes like "adiabatic capture" and "string transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55

    A modification of the Chen-Nester quasilocal expressions

    Full text link
    Chen and Nester proposed four boundary expressions for the quasilocal quantities using the covariant Hamiltonian formalism. Based on these four expressions, there is a simple generalization that one can consider, so that a two parameter set of boundary expressions can be constructed. Using these modified expressions, a nice result for gravitational energy-momentum can be obtained in holonomic frames.Comment: 11 page
    corecore