9 research outputs found

    Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity

    Get PDF
    Plasma cell responses are associated with anti-tumor immunity and favorable response to immunotherapy. B cells can amplify anti-tumor immune responses through antibody production; yet B cells in patients and tumor-bearing mice often fail to support this effector function. We identify dysregulated transcriptional program in B cells that disrupts differentiation of naive B cells into anti-tumor plasma cells. The signaling network contributing to this dysfunction is driven by interleukin (IL) 35 stimulation of a STAT3-PAX5 complex that upregulates the transcriptional regulator BCL6 in naive B cells. Transient inhibition of BCL6 in tumor-educated naive B cells is sufficient to reverse the dysfunction in B cell differentiation, stimulating the intra-tumoral accumulation of plasma cells and effector T cells and rendering pancreatic tumors sensitive to anti-programmed cell death protein 1 (PD-1) blockade. Our findings argue that B cell effector dysfunction in cancer can be due to an active systemic suppression program that can be targeted to synergize with T cell-directed immunotherapy

    Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells

    Get PDF
    The high expression across multiple tumor types and restricted expression in normal tissues make B7-H3 an attractive target for immunotherapy. We generated chimeric antigen receptor (CAR) T cells targeting B7-H3 (B7-H3.CAR-Ts) and found that B7-H3.CAR-Ts controlled the growth of pancreatic ductal adenocarcinoma, ovarian cancer and neuroblastoma in vitro and in orthotopic and metastatic xenograft mouse models, which included patient-derived xenograft. We also found that 4-1BB co-stimulation promotes lower PD-1 expression in B7-H3.CAR-Ts, and superior antitumor activity when targeting tumor cells that constitutively expressed PD-L1. We took advantage of the cross-reactivity of the B7-H3.CAR with murine B7-H3, and found that B7-H3.CAR-Ts significantly controlled tumor growth in a syngeneic tumor model without evident toxicity. These findings support the clinical development of B7-H3.CAR-Ts

    Original Article Indian J Lepr 2013, 85 : 65-78 © Hind Kusht Nivaran Sangh, New Delhi

    No full text
    Tuberculosis is a major health problem throughout the world causing large number of deaths, more than that from any other single infectious disease. Estimates till date ascertain the fact that Tuberculosis (TB) is continuing to be the leading cause of death worldwide. The infection from single infectious agent Mycobacterium tuberculosis is killing about 3 million individuals every year and accounts for around 18.5% of all deaths in adults between the age group of 15 and 65. An average of 1.79 billion people, which constitutes roughly one-third of the world's population, is infected with the causative agent M. tuberculosis and is at risk of developing the disease. This situation highlights the relative shortcomings of the current treatment and diagnosis strategies for TB and the limited effectiveness of public health systems, particularly in resourcepoor countries where the main TB burden lies. The timely identification of persons infected with Mycobacterium tuberculosis and rapid laboratory confirmation of tuberculosis are two key factors for the treatment and prevention of the disease. Novel molecular assays for diagnosis and drug susceptibility testing offer several potential advantages over the above methods including faster turnaround times, very sensitive and specific detection of nucleic acids, and minimal, or possibly no, prior culture. The need for new technologies for rapid diagnosis of tuberculosis is clear. Most studies of mycobacterial immunity attributes focus on proliferation of T cells, production of cytokines and cytolytic activity. A proper vaccine for tuberculosis can be developed by using a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. Development of new vaccines against TB should include some important aspects learned from BCG use such as mucosal routes of immunization; revaccination of BCG immunized subjects, booster immunization and prime-boost strategy with wild-type BCG, and other vaccine candidates. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future

    Carbon nanospheres mediated delivery of nuclear matrix protein SMAR1 to direct experimental autoimmune encephalomyelitis in mice

    No full text
    Sijo V Chemmannur,1,* Prasad Bhagat,2,* Bhalchandra Mirlekar,1 Kishore M Paknikar,2 Samit Chattopadhyay1,3 1Disease and Chromatin Biology Laboratory, National Center for Cell Science, Pune University Campus, Pune, Maharashtra, India; 2Center for Nanobioscience, Agharkar Research Institute, Pune, Maharashtra, India; 3Indian Institute of Chemical Biology, Kolkata, India *These authors have contributed equally to this work Abstract: Owing to the suppression of immune responses and associated side effects, steroid based treatments for inflammatory encephalitis disease can be detrimental. Here, we demonstrate a novel carbon nanosphere (CNP) based treatment regime for encephalomyelitis in mice by exploiting the functional property of the nuclear matrix binding protein SMAR1. A truncated part of SMAR1 ie, the DNA binding domain was conjugated with hydrothermally synthesized CNPs. When administered intravenously, the conjugate suppressed experimental animal encephalomyelitis in T cell specific conditional SMAR1 knockout mice (SMAR-/-). Further, CNP-SMAR1 conjugate delayed the onset of the disease and reduced the demyelination significantly. There was a significant decrease in the production of IL-17 after re-stimulation with MOG. Altogether, our findings suggest a potential carbon nanomaterial based therapeutic intervention to combat Th17 mediated autoimmune diseases including experimental autoimmune encephalomyelitis. Keywords: carbon nanospheres, EAE, IL-17, SMAR1, Th1

    Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease

    No full text
    Asthma is a complex airway allergic disease involving the interplay of various cell types, cytokines, and transcriptional factors. Though many factors contribute to disease etiology, the molecular control of disease phenotype and responsiveness is not well understood. Here we report an essential role of the matrix attachment region (MAR)-binding protein SMAR1 in regulating immune response during allergic airway disease. Conditional knockout of SMAR1 in T cells rendered the mice resistant to eosinophilic airway inflammation against ovalbumin (OVA) allergen with low immunoglobulin E (IgE) and interleukin-5 (IL-5) levels. Moreover, a lower IgE/IgG2a ratio and higher interferon-γ (IFN-γ) response suggested aberrant skewing of T-cell differentiation toward type 1 helper T cell (Th1) response. We show that SMAR1 functions as a negative regulator of Th1 and Th17 differentiation by interacting with two potential and similar MAR regions present on the promoters of T-bet and IL-17. Thus, we present SMAR1 as a regulator of T-cell differentiation that favors the establishment of Th2 cells by modulating Th1 and Th17 responses
    corecore