10 research outputs found

    Solid state sintering of silicon nitride ARL-CR-114. Final report

    No full text
    This report describes the development of Si{sub 3}N{sub 4}material compositions in the Si{sub 3}N{sub 4}-Y{sub 2}O{sub 3}-SiO{sub 2}-Mo{sub 2}C system with good high temperature stress rupture properties which could be used in engine components. Two distinct processing routes were examined in the course of the program: SSN and SRBSN. SRBSN was chosen for material property optimization. After characterization of two optimized compositions in the above system, demonstration engine components (exhaust valve blanks) were manufactured using the established processing procedures. Dimensional tolerance capabilities of the process were established and material properties of the components were shown to be comparable to those established during material development

    Laser shock peening and mechanical shot peening processes applicable for the surface treatment of technical grade ceramics: a review

    Get PDF
    Laser shock peening and conventional mechanical shot peening are both comparable processes generally applicable to surface treat various metals and alloys. Commercial advantages offered by the laser systems such as flexibility, deep penetration of laser-induced shocks with precise control of the thermal pulses, shorter process times, high speeds, accuracy and aesthetics are attractive in comparison with the mechanical shot peening technique. Laser shock peening in the recent years has proved to be successful with steels, aluminium and titanium surfaces and metallic alloys in general. Nevertheless, minimal research has been conducted on laser shock peening and mechanical shot peening of technical grade ceramics. This article presents an update of the theory and to-date relevant literature within the two subject areas, as well as a comparison and a contrast between the mechanical and laser shock peening techniques. In addition, various gaps in knowledge are identified to propose further research for the development of both the techniques applicable to the surface treatment of technical grade ceramics
    corecore