1,060 research outputs found

    Shear banding of colloidal glasses - a dynamic first order transition?

    Get PDF
    We demonstrate that application of an increasing shear field on a glass leads to an intriguing dynamic first order transition in analogy to equilibrium transitions. By following the particle dynamics as a function of the driving field in a colloidal glass, we identify a critical shear rate upon which the diffusion time scale of the glass exhibits a sudden discontinuity. Using a new dynamic order parameter, we show that this discontinuity is analogous to a first order transition, in which the applied stress acts as the conjugate field on the system's dynamic evolution. These results offer new perspectives to comprehend the generic shear banding instability of a wide range of amorphous materials.Comment: 4 pages, 4 figure

    Criticality in Dynamic Arrest: Correspondence between Glasses and Traffic

    Full text link
    Dynamic arrest is a general phenomenon across a wide range of dynamic systems, but the universality of dynamic arrest phenomena remains unclear. We relate the emergence of traffic jams in a simple traffic flow model to the dynamic slow down in kinetically constrained models for glasses. In kinetically constrained models, the formation of glass becomes a true (singular) phase transition in the limit T0T\to 0. Similarly, using the Nagel-Schreckenberg model to simulate traffic flow, we show that the emergence of jammed traffic acquires the signature of a sharp transition in the deterministic limit \pp\to 1, corresponding to overcautious driving. We identify a true dynamical critical point marking the onset of coexistence between free flowing and jammed traffic, and demonstrate its analogy to the kinetically constrained glass models. We find diverging correlations analogous to those at a critical point of thermodynamic phase transitions.Comment: 4 pages, 4 figure

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    Gravitational Waves in Bianchi Type-I Universes I: The Classical Theory

    Full text link
    The propagation of classical gravitational waves in Bianchi Type-I universes is studied. We find that gravitational waves in Bianchi Type-I universes are not equivalent to two minimally coupled massless scalar fields as it is for the Robertson-Walker universe. Due to its tensorial nature, the gravitational wave is much more sensitive to the anisotropy of the spacetime than the scalar field is and it gains an effective mass term. Moreover, we find a coupling between the two polarization states of the gravitational wave which is also not present in the Robertson-Walker universe.Comment: 34 papers, written in ReVTeX, submitted to Physical Review

    A Request to Bernardus Grootenhuis, Supervisor of the Township of Holland, by Electors of the Township in Order to Pledge Aid for the Allegan to Holland Railroad.

    Get PDF
    A request to Bernardus Grootenhuis, Supervisor of the Township of Holland, by electors of the township in order to pledge aid for the Allegan to Holland railroad. By a vote of 197 to 46, such aid was approved by the electors. The trustees for the election were Bernard Grootenhuis, D. Miedema and A. J. Hillebranus [7].https://digitalcommons.hope.edu/vrp_1860s/1508/thumbnail.jp

    Unexpected Magnetism of Small Silver Clusters

    Get PDF
    The ground-state electronic, structural, and magnetic properties of small silver clusters, Agn_n (2\len\le22), have been studied using a linear combination of atomic Gaussian-type orbitals within the density functional theory. The results show that the silver atoms, which are diamagnetic in bulk environment, can be magnetic when they are grouped together in clusters. The Ag13_{13} cluster with icosahedral symmetry has the highest magnetic moment per atom among the studied silver clusters. The cluster symmetry and the reduced coordination number specific of small clusters reveal as a fundamental factor for the onset of the magnetism.Comment: 4 pages, 4 figure
    corecore