11 research outputs found

    A novel, rapid method to compare the therapeutic windows of oral anticoagulants using the Hill coefficient

    Get PDF
    A central challenge in designing and administering effective anticoagulants is achieving the proper therapeutic window and dosage for each patient. The Hill coefficient, nH, which measures the steepness of a dose-response relationship, may be a useful gauge of this therapeutic window. We sought to measure the Hill coefficient of available anticoagulants to gain insight into their therapeutic windows. We used a simple fluorometric in vitro assay to determine clotting activity in platelet poor plasma after exposure to various concentrations of anticoagulants. The Hill coefficient for argatroban was the lowest, at 1.7±0.2 (95% confidence interval, CI), and the Hill coefficient for fondaparinux was the highest, at 4.5±1.3 (95% CI). Thus, doubling the dose of fondaparinux from its IC50 would decrease coagulation activity by nearly a half, whereas doubling the dose of argatroban from its IC50 would decrease coagulation activity by merely one quarter. These results show a significant variation among the Hill coefficients, suggesting a similar variation in therapeutic windows among anticoagulants in our assay

    Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer : A systematic review

    Get PDF
    Publisher Copyright: © 2016 Endzeliņš et al.Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.publishersversionPeer reviewe
    corecore