5,709 research outputs found
Reacting to the Past: A High Impact Practice as a Tool for Retaining Honors Students
Reacting to the Past (RTTP) is a roleplaying pedagogy highly regarded as an innovative high-impact practice. RTTP consists of elaborate historical games informed by major texts in the history of ideas and takes place during major historical turning points. The effectiveness of this methodology, in terms of its impact on students’ intention to stay in honors, was examined using a nonequivalent groups design composed of first semester students in the Honors Program at the University of South Dakota. Students that took a RTTP course and students that took a different honors course their first semester were given the same survey at two points: after midterm but before the simulation started, and during the last week of class, after the simulation took place. Analysis of results revealed that students in the RTTP course reported a higher intention to stay in the honors program than those students who did not take RTTP. Additionally, the relationships among several measures of engagement were explored and related to student intention to stay in the honors program
Recommended from our members
Carbon isotope ratioss of coccolith-associated polysaccharides of Emiliania huxleyi as a function of growth rate and CO2 concentration
The calcite plates, or coccoliths, of haptophyte algae including Emiliania huxleyi are formed in intracellular vesicles in association with water–soluble acidic polysaccharides. These coccolith–associated polysaccharides (CAPs) are involved in regulating coccolith formation and have been recovered from sediment samples dating back to ∼180 Ma. Paired measurements of the carbon isotopic compositions of CAPs and coccolith calcite have been proposed as a novel paleo–pCO2 barometer, but additional proxy validation and development are still required. Here we present culture results quantifying carbon isotopic offsets between CAPs and other cellular components: bulk organic biomass, alkenones, and calcite. E. huxleyi was grown in nitrate–limited chemostat experiments at growth rates (µ) of 0.20–0.62/d and carbon dioxide concentrations of 10.7–17.6 µmol/kg. We find that CAPs are isotopically enriched by 4.5–10.1‰ relative to bulk organic carbon, exhibiting smaller isotopic offsets at faster growth rates and lower CO2 concentrations. This variability suggests that CAPs record a complementary signature of past growth conditions with different sensitivity than alkenones or coccolith calcite. By measuring the isotopic compositions of all three molecules and minerals of self-consistent origin, the ratio µ/[CO2(aq)] may be reconstructed with fewer assumptions than current approaches
Network sensitivity to geographical configuration
Gravitational wave astronomy will require the coordinated analysis of data
from the global network of gravitational wave observatories. Questions of how
to optimally configure the global network arise in this context. We have
elsewhere proposed a formalism which is employed here to compare different
configurations of the network, using both the coincident network analysis
method and the coherent network analysis method. We have constructed a network
model to compute a figure-of-merit based on the detection rate for a population
of standard-candle binary inspirals. We find that this measure of network
quality is very sensitive to the geographic location of component detectors
under a coincident network analysis, but comparatively insensitive under a
coherent network analysis.Comment: 7 pages, 4 figures, accepted for proceedings of the 4th Edoardo
Amaldi conference, incorporated referees' suggestions and corrected diagra
Arm cavity resonant sideband control for laser interferometric gravitational wave detectors
We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity
The ACIGA Data Analysis programme
The Data Analysis programme of the Australian Consortium for Interferometric
Gravitational Astronomy (ACIGA) was set up in 1998 by the first author to
complement the then existing ACIGA programmes working on suspension systems,
lasers and optics, and detector configurations. The ACIGA Data Analysis
programme continues to contribute significantly in the field; we present an
overview of our activities.Comment: 10 pages, 0 figures, accepted, Classical and Quantum Gravity,
(Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves,
Tirrenia, Pisa, Italy, 6-11 July 2003
Grouting to Control Deep Foundation Settlement
An 18-story reinforced concrete building under construction in South Florida reached 16th floor level when significant differential settlement presented an unanticipated foundation problem. The foundation consisted of a structural mat supported by 14-in. concrete piles 24 to 75 ft long. Surprisingly, the longest piles were within the area of greatest settlement. Investigation revealed a previously undisclosed semi-cavernous zone from 120 to 175 ft below ground surface, and level surveys using deep benchmarks confirmed that zone to be the source of movement. Injection grouting first accelerated and then controlled the settlement, allowing the building to be completed on schedule. Temperature probes and weekly precise level surveys were key control devices contributing to the correction of the problem
Suppression of Classical and Quantum Radiation Pressure Noise via Electro-Optic Feedback
We present theoretical results that demonstrate a new technique to be used to
improve the sensitivity of thermal noise measurements: intra-cavity intensity
stabilisation. It is demonstrated that electro-optic feedback can be used to
reduce intra-cavity intensity fluctuations, and the consequent radiation
pressure fluctuations, by a factor of two below the quantum noise limit. We
show that this is achievable in the presence of large classical intensity
fluctuations on the incident laser beam. The benefits of this scheme are a
consequence of the sub-Poissonian intensity statistics of the field inside a
feedback loop, and the quantum non-demolition nature of radiation pressure
noise as a readout system for the intra-cavity intensity fluctuations.Comment: 4 pages, 1 figur
Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy
We present an experimental technique enabling mechanical-noise free,
cavity-enhanced frequency measurements of an atomic transition and its
hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG
laser and an iodine vapour cell. The cell is placed in a traveling-wave
Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams.
The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise
is rejected by differencing pump and probe signals. In addition, this
differenced error signal gives a sensitive measure of differential
non-linearity within the FPI.Comment: 3 pages, 5 figures, submitted to Optics Letter
- …