93 research outputs found
FlyRNAi.org—the database of the Drosophila RNAi screening center: 2012 update
FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database
Recombinants within the tyrosine kinase region of v-abl and v-src identify a v-abl segment that confers lymphoid specificity.
The v-abl and v-src oncogenes encode protein-tyrosine kinases that possess different biological properties in spite of their high degree of amino acid conservation. To correlate functional differences with structural domains of the two oncogenes, we recombined v-abl and v-src just downstream of the lysines in their ATP-binding sites, within the kinase domain. The biological activity of the chimeric genes was studied and compared with that of v-src and v-abl. The v-src/v-abl recombinant shared with v-src and v-abl the ability to transform fibroblasts. In addition, like v-abl, it transformed lymphoid cells and relieved a hematopoietic cell line of its interleukin 3 requirement. In contrast, the reciprocal construct, v-abl/v-src, was transformation defective. Lack of biological activity correlated with formation of a stable complex between the chimeric protein and two cellular proteins and with low kinase activity. We conclude that the specificity within the kinase domain determines the particular biological behavior of protein-tyrosine kinase oncogenes
Recombinants within the tyrosine kinase region of v-abl and v-src identify a v-abl segment that confers lymphoid specificity.
Preferential expression of the c-fps protein in chicken macrophages and granulocytic cells.
We have studied the expression of the protein kinase activity of NCP98, the c-fps gene product, in several hemopoietic tissues of chickens as a function of the developmental stage of these organs. We found that in bone marrow, spleen, and bursa, maximum NCP98 kinase activity on a per-cell basis correlates with the peak of granulopoiesis in these organs. Furthermore, in a bovine serum albumin density gradient fractionation of bone marrow cells, granulocytic cells appeared to account for most of the NCP98 kinase activity. No correlation was found between the distribution of erythrocytic, lymphocytic, or thrombocytic cells and the distribution of the expression of NCP98 kinase activity. However, NCP98 protein and kinase activity were 10-fold higher in macrophages than in bone marrow. In addition, depletion by complement-mediated lysis of erythrocytic cells in bone marrow did not significantly reduce the total recovery of NCP98 kinase activity. These results argue for the specific expression of the c-fps gene product in granulocytic cells and macrophages.</jats:p
Interleukin-3 expression by activated T cells involves an inducible, T- cell-specific factor and an octamer binding protein
Interleukin-3 (IL-3) is exclusively expressed by activated T and natural killer cells, a function that is tightly controlled both in a lineage-specific and in a stimulation-dependent manner. We have investigated the protein binding characteristics and functional importance of the ACT-1-activating region of the IL-3 promoter. This region binds an inducible, T-cell-specific factor over its 5′ end, a site that is necessary for the expression of IL-3 in the absence of other upstream elements. Over its 3′ end, it binds a factor that is ubiquitously and constitutively expressed. This factor is Oct-1 or an immunologically related octamer-binding protein, and it plays a role in coordinating the activity of several regulatory elements. These characteristics make the ACT-1 site analogous to the activating ARRE-1 site in the IL-2 promoter. Furthermore, and despite a lack of sequence homology, the promoters of IL-3 and IL-2 share an organizational pattern of regulatory elements that is likely to be important for the T- cell-specific expression of these genes.</jats:p
Revertants and partial transformants of rat fibroblasts infected with Fujinami sarcoma virus
Fifteen revertants were isolated from three independent clones of rat fibroblasts transformed by Fujinami sarcoma virus (FSV). Three revertant clones resulted from the deletion of the one copy of the FSV provirus, and one encoded an enzymatically inactive, transformation-defective protein. The remaining revertant clones were characterized by a transcriptional block of the provirus. Digestion of chromosomal DNA with MspI and HpaII revealed that the FSV provirus was hypermethylated in these revertants, whereas proviral DNA of their spontaneous retransformants was hypomethylated. Furthermore, the revertants had lost DNase I-hypersensitive sites in and around the FSV provirus. The effect of transcriptional regulation of the FSV provirus was further analyzed in clones showing various degrees of phenotypic transformation. We quantitated v-fps mRNA levels in these cells by liquid hybridization and found that increasing levels of viral RNA correlated with a more pronounced transformed phenotype. These results suggest that transcription of FSV proviral DNA is under both viral and cellular control and that transformation by FSV is a function of the dosage of v-fps mRNA.</jats:p
Interleukin-3 expression by activated T cells involves an inducible, T- cell-specific factor and an octamer binding protein
Abstract
Interleukin-3 (IL-3) is exclusively expressed by activated T and natural killer cells, a function that is tightly controlled both in a lineage-specific and in a stimulation-dependent manner. We have investigated the protein binding characteristics and functional importance of the ACT-1-activating region of the IL-3 promoter. This region binds an inducible, T-cell-specific factor over its 5′ end, a site that is necessary for the expression of IL-3 in the absence of other upstream elements. Over its 3′ end, it binds a factor that is ubiquitously and constitutively expressed. This factor is Oct-1 or an immunologically related octamer-binding protein, and it plays a role in coordinating the activity of several regulatory elements. These characteristics make the ACT-1 site analogous to the activating ARRE-1 site in the IL-2 promoter. Furthermore, and despite a lack of sequence homology, the promoters of IL-3 and IL-2 share an organizational pattern of regulatory elements that is likely to be important for the T- cell-specific expression of these genes.</jats:p
- …
