83 research outputs found

    ELAWD GROUT HOPPER MOCK-UP TESTING

    Get PDF
    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominal working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested

    SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires.</p> <p>Results</p> <p>Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code.</p> <p>Conclusion</p> <p>The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.</p

    Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics

    Get PDF
    The increasing availability of high-frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs

    The urologic epithelial stem cell database (UESC) – a web tool for cell type-specific gene expression and immunohistochemistry images of the prostate and bladder

    Get PDF
    Background: Public databases are crucial for analysis of high-dimensional gene and protein expression data. The Urologic Epithelial Stem Cells (UESC) database http://scgap.systemsbiology.net/ is a public database that contains gene and protein information for the major cell types of the prostate, prostate cancer cell lines, and a cancer cell type isolated from a primary tumor. Similarly, such information is available for urinary bladder cell types. Description: Two major data types were archived in the database, protein abundance localization data from immunohistochemistry images, and transcript abundance data principally from DNA microarray analysis. Data results were organized in modules that were made to operate independently but built upon a core functionality. Gene array data and immunostaining images for human and mouse prostate and bladder were made available for interrogation. Data analysis capabilities include: (1) CD (cluster designation) cell surface protein data. For each cluster designation molecule, a data summary allows easy retrieval of images (at multiple magnifications). (2) Microarray data. Single gene or batch search can be initiated with Affymetrix Probeset ID, Gene Name, or Accession Number together with options of coalescing probesets and/or replicates. Conclusion: Databases are invaluable for biomedical research, and their utility depends on data quality and user friendliness. UESC provides for database queries and tools to examine cell typespecific gene expression (normal vs. cancer), whereas most other databases contain only whole tissue expression datasets. The UESC database provides a valuable tool in the analysis of differential gene expression in prostate cancer genes in cancer progression.This work was supported by grant 1U01 DK63630 from NIDDK. Additional funding came from grants CA85859, CA98699 and CA111244 from NCI

    Adaptable data management for systems biology investigations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage.</p> <p>Results</p> <p>The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents.</p> <p>Conclusion</p> <p>Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.</p

    Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    Get PDF
    Background: Prostate cancer cells in primary tumors have been typed CD10(-)/CD13(-)/CD24(hi)/CD26(+)/CD38(lo)/CD44(-)/CD104(-). This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods: CD26(+) cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results: The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions: Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.National Institutes of Health (NIH)[CA111244]National Institutes of Health (NIH)[CA98699]National Institutes of Health (NIH)[CA85859]National Institutes of Health (NIH)[DK63630][P50-GMO-76547

    Differential Inductive Signaling of CD90+ Prostate Cancer-Associated Fibroblasts Compared to Normal Tissue Stromal Mesenchyme Cells

    Get PDF
    Prostate carcinomas are surrounded by a layer of stromal fibroblastic cells that are characterized by increased expression of CD90. These CD90+ cancer-associated stromal fibroblastic cells differ in gene expression from their normal counterpart, CD49a+CD90lo stromal smooth muscle cells; and were postulated to represent a less differentiated cell type with altered inductive properties. CD90+ stromal cells were isolated from tumor tissue specimens and co-cultured with the pluripotent embryonal carcinoma cell line NCCIT in order to elucidate the impact of tumor-associated stroma on stem cells, and the ‘cancer stem cell.’ Transcriptome analysis identified a notable decreased induction of smooth muscle and prostate stromal genes such as PENK, BMP2 and ChGn compared to previously determined NCCIT response to normal prostate stromal cell induction. CD90+ stromal cell secreted factors induced an increased expression of CD90 and differential induction of genes involved in extracellular matrix remodeling and the RECK pathway in NCCIT. These results suggest that, compared to normal tissue stromal cells, signaling from cancer-associated stromal cells has a markedly different effect on stem cells as represented by NCCIT. Given that stromal cells are important in directing organ-specific differentiation, stromal cells in tumors appear to be defective in this function, which may contribute to abnormal differentiation found in diseases such as cancer

    LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely.</p> <p>Results</p> <p>To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment.</p> <p>Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers.</p> <p>Conclusions</p> <p>Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at <url>http://www.labkey.org</url>. Documentation and source code are available under the Apache License 2.0.</p
    corecore