3,255 research outputs found

    Weak Ferromagnetic Exchange and Anomalous Specific Heat in ZnCu3(OH)6Cl2

    Full text link
    Experimental evidence for a plethora of low energy spin excitations in the spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 may be understandable in terms of an extended Fermi surface of spinons coupled to a U(1) gauge field. We carry out variational calculations to examine the possibility that such a state may be energetically viable. A Gutzwiller-projected wavefunction reproduces the dimerization of a kagome strip found previously by DMRG. Application to the full kagome lattice shows that the inclusion of a small ferromagnetic next-nearest-neighbor interaction favors a ground state with a spinon Fermi surface.Comment: 4 pages, 3 figures, some clarifications to the tex

    Confinement of matter fields in compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors

    Full text link
    We study confinement of matter fields in the effective compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors. It is shown that the monopole configurations do not affect the propagator of gauge potential aμa_{\mu}. Based on this result, we found that: chiral symmetry breaking and confinement take place simultaneously in the antiferromagnetic state; neither monopole effect nor Anderson-Higgs mechanism can cause confinement in the d-wave superconducting state.Comment: 5 pages, no figure

    Statistics of the General Circulation from Cumulant Expansions

    Full text link
    Large-scale atmospheric flows may not be so nonlinear as to preclude their statistical description by systematic expansions in cumulants. I extend previous work by examining a two-layer baroclinic model of the general circulation. The fixed point of the cumulant expansion describes the statistically steady state of the out-of-equilibrium model. Equal-time statistics so obtained agree well with those accumulated by direct numerical simulation.Comment: 1 page paper with 4 figures that accompanies one of the winning entries in the APS gallery of nonlinear images competitio

    Topological Origin of Equatorial Waves

    Full text link
    Topology sheds new light on the emergence of unidirectional edge waves in a variety of physical systems, from condensed matter to artificial lattices. Waves observed in geophysical flows are also robust to perturbations, which suggests a role for topology. We show a topological origin for two celebrated equatorially trapped waves known as Kelvin and Yanai modes, due to the Earth's rotation that breaks time-reversal symmetry. The non-trivial structure of the bulk Poincar\'e wave modes encoded through the first Chern number of value 22 guarantees existence for these waves. This invariant demonstrates that ocean and atmospheric waves share fundamental properties with topological insulators, and that topology plays an unexpected role in the Earth climate system
    corecore