53 research outputs found
Quadrupole correlations and inertial properties of rotating nuclei
The contribution of quantum shape fluctuations to inertial properties of
rotating nuclei has been analyzed for QQ-nuclear interaction using the random
phase approximation (RPA). The different recipes to treat the cranking mean
field plus RPA problem are considered. The effects of the dN=2 quadrupole
matrix elements and the role of the volume conservation condition are
discussed.Comment: 14 pages, 7 figures, To be published in J. Phys. G: Nucl. Phy
Inertial parameters and superfluid-to-normal phase transition in superdeformed bands
The quasiclassically exact solution for the second inertial parameter is found in self-consistent way. It is shown that superdeformation and
nonuniform pairing arising from the rotation induced pair density significantly
reduce this inertial parameter. The different limiting cases for ,
which allow to study an interplay between rapid rotation, pairing correlations,
and mean field deformation, are considered. The new signature for the
transition from pairing to normal phase is suggested in terms of the variation
of versus spin. Experimental data indicate the existence of
such transition in the three superdeformed mass regions.Comment: 8 pages, LaTeX, 3 figure
Gamow-Teller transitions and deformation in the proton-neutron random phase approximation
We investigate reliability of Gamow-Teller transition strengths computed in
the proton-neutron random phase approximation, comparing with exact results
from diagonalization in full shell-model spaces. By allowing the
Hartree-Fock state to be deformed, we obtain good results for a wide variety of
nuclides, even though we do not project onto good angular momentum. We suggest
that deformation is as important or more so than pairing for Gamow-Teller
transitions.Comment: 8 pages, 5 figures; added references, clarified discussion with
regards to stabilit
Off-Label Use of Transmucosal Ketamine as a Rapidacting Antidepressant: A Retrospective Chart Review
Objective: This study evaluated the effectiveness and safety of subanesthetic doses of ketamine using an off-label, transmucosal administration route in patients with treatment-resistant depression.
Methods: A retrospective chart review was conducted to identify patients who met the inclusion criteria for treatment-resistant major depressive disorder. Seventeen such patients who received subanesthetic doses of ketamine were included. Patient demographics, efficacy (drug refill, clinician notes), side effects, and concurrent medications were assessed.
Results: Benefit from low-dose transmucosal ketamine was noted in 76% of subjects (average age 48 years, 88% female), with a dose duration lasting 7–14 days. No notable side effects were noted. The most common classes of concurrent medications to which ketamine was added were serotonin–norepinephrine reuptake inhibitors (59%), stimulants (47%), folate replacement (47%), and benzodiazepines (47%).
Conclusion: Our results provide preliminary evidence of the effectiveness and safety of lowdose transmucosal ketamine in treatment-resistant patients. A controlled, prospective pilot study is warranted to validate these findings
Self-Consistent Velocity Dependent Effective Interactions
The theory of self-consistent effective interactions in nuclei is extended
for a system with a velocity dependent mean potential. By means of the field
coupling method, we present a general prescription to derive effective
interactions which are consistent with the mean potential. For a deformed
system with the conventional pairing field, the velocity dependent effective
interactions are derived as the multipole pairing interactions in
doubly-stretched coordinates. They are applied to the microscopic analysis of
the giant dipole resonances (GDR's) of , the first excited
states of Sn isotopes and the first excited states of Mo isotopes.
It is clarified that the interactions play crucial roles in describing the
splitting and structure of GDR peaks, in restoring the energy weighted sum
rule, and in reducing the values of .Comment: 35 pages, RevTeX, 7 figures (available upon request), to appear in
Phys.Rev.
Tilted Rotation and Wobbling Motion in Nuclei
The self-consistent harmonic oscillator model including the three-dimensional
cranking term is extended to describe collective excitations in the random
phase approximation. It is found that quadrupole collective excitations
associated with wobbling motion in rotating nuclei lead to the appearance of
two- or three-dimensional rotation.Comment: 9 pages, 2 Postscript figures, corrected typo
Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg
Microscopic RPA calculations based on the cranked shell model are performed
to investigate the quadrupole and octupole correlations for excited
superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are
predicted to be the lowest excitation modes at zero rotational frequency. At
finite frequency, however, the interplay between rotation and vibrations
produces different effects depending on neutron number: The lowest octupole
phonon is rotationally aligned in 190Hg, is crossed by the aligned
two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational
character up to the highest frequency in 194Hg. The gamma vibrations are
predicted to be higher in energy and less collective than the octupole
vibrations. From a comparison with the experimental dynamic moments of inertia,
a new interpretation of the observed excited bands invoking the K=2 octupole
vibrations is proposed, which suggests those octupole vibrations may be
prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques
Riemann's theorem for quantum tilted rotors
The angular momentum, angular velocity, Kelvin circulation, and vortex
velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned
with a principal axis or (2) lie in a principal plane of the inertia ellipsoid.
In the second case, the ratios of the components of the Kelvin circulation to
the corresponding components of the angular momentum, and the ratios of the
components of the angular velocity to those of the vortex velocity are analytic
functions of the axes lengths.Comment: 8 pages, Phys. Rev.
Moments of Inertia of Nuclei in the Rare Earth Region: A Relativistic versus Non-Relativistic Investigation
A parameter free investigation of the moments of inertia of ground state
rotational bands in well deformed rare-earth nuclei is carried out using
Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked
Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic
fields are determined by the non-linear Lagrangian with the NL1 force and the
pairing interaction by the central part of finite range Gogny D1S force. In
CHFB theory, the properties in particle-hole and particle-particle channels are
defined solely by Gogny D1S forces. Using an approximate particle number
projection before variation by means of the Lipkin Nogami method improves the
agreement with the experimental data, especially in CRHB theory. The effect of
the particle number projection on the moments of inertia and pairing energies
is larger in relativistic than in non-relativistic theory.Comment: 18 pages + 2 PostScript figure
Scalar ground-state observables in the random phase approximation
We calculate the ground-state expectation value of scalar observables in the
matrix formulation of the random phase approximation (RPA). Our expression,
derived using the quasiboson approximation, is a straightforward generalization
of the RPA correlation energy. We test the reliability of our expression by
comparing against full diagonalization in 0 h-bar omega shell-model spaces. In
general the RPA values are an improvement over mean-field (Hartree-Fock)
results, but are not always consistent with shell-model results. We also
consider exact symmetries broken in the mean-field state and whether or not
they are restored in RPA.Comment: 7 pages, 3 figure
- …