224 research outputs found

    Theory of the optical conductivity of (TMTSF)2_2PF6_6 in the mid-infrared range

    Full text link
    We propose an explanation of the mid-infrared peak observed in the optical conductivity of the Bechgaard salt (TMTSF)2_2PF6_6 in terms of electronic excitations. It is based on a numerical calculation of the conductivity of the quarter-filled, dimerized Hubbard model. The main result is that, even for intermediate values of U/tU/t for which the charge gap is known to be very small, the first peak, and at the same time the main structure, of the optical conductivity is at an energy of the order of the dimerization gap, like in the infinite UU case. This surprising effect is a consequence of the optical selection rules.Comment: 10 pages, 9 uuencoded figure

    Double Exchange Model for Magnetic Hexaborides

    Full text link
    A microscopic theory for rare-earth ferromagnetic hexaborides, such as Eu(1-x)Ca(x)B6, is proposed on the basis of the double-exchange Hamiltonian. In these systems, the reduced carrier concentrations place the Fermi level near the mobility edge, introduced in the spectral density by the disordered spin background. We show that the transport properties such as Hall effect, magnetoresitance, frequency dependent conductivity, and DC resistivity can be quantitatively described within the model. We also make specific predictions for the behavior of the Curie temperature, Tc, as a function of the plasma frequency, omega_p.Comment: 4 pages, 3 figure

    Deducing correlation parameters from optical conductivity in the Bechgaard salts

    Full text link
    Numerical calculations of the kinetic energy of various extensions of the one-dimensional Hubbard model including dimerization and repulsion between nearest neighbours are reported. Using the sum rule that relates the kinetic energy to the integral of the optical conductivity, one can determine which parameters are consistent with the reduction of the infrared oscillator strength that has been observed in the Bechgaard salts. This leads to improved estimates of the correlation parameters for both the TMTSF and TMTTF series.Comment: 12 pages, latex, figures available from the author

    Dynamical mean field theory for transition temperature and optics of CMR manganites

    Full text link
    A tight binding parametrization of local spin density functional band theory is combined with a dynamical mean field treatment of correlations to obtain a theory of the magnetic transition temperature, optical conductivity and T=0 spinwave stiffness of a minimal model for the pseudocubic metallic CMRCMR manganites such a La1XSrxMnO3La_{1-X}Sr_{x}MnO_{3}. The results indicate that previous estimates of TcT_{c} obtained by one of us (Phys. Rev. \textbf{B61} 10738-49 (2000)) are in error, that in fact the materials are characterized by Hunds coupling J1.5eVJ\approx 1.5eV, and that magnetic-order driven changes in the kinetic energy may not be the cause of the observed 'colossal' magnetoresistive and multiphase behavior in the manganites, raising questions about our present understanding of these materials.Comment: Published version; 10 pages, 9 figure

    Crossover of superconducting properties and kinetic-energy gain in two-dimensional Hubbard model

    Full text link
    Superconductivity in the Hubbard model on a square lattice near half filling is studied using an optimization (or correlated) variational Monte Carlo method. Second-order processes of the strong-coupling expansion are considered in the wave functions beyond the Gutzwiller factor. Superconductivity of d_x^2-y^2-wave is widely stable, and exhibits a crossover around U=U_co\sim 12t from a BCS type to a new type. For U\gsim U_co (U\lsim U_co), the energy gain in the superconducting state is derived from the kinetic (potential) energy. Condensation energy is large and \propto exp(-t/J) [tiny] on the strong [weak] coupling side of U_co. Cuprates belong to the strong-coupling regime.Comment: 4 pages, 6 figure

    Electrical resistivity at large temperatures: Saturation and lack thereof

    Full text link
    Many transition metal compounds show saturation of the resistivity at high temperatures, T, while the alkali-doped fullerenes and the high-Tc cuprates are usually considered to show no saturation. We present a model of transition metal compounds, showing saturation, and a model of alkali-doped fullerenes, showing no saturation. To analyze the results we use the f-sum rule, which leads to an approximate upper limit for the resistivity at large T. For some systems and at low T, the resistivity increases so rapidly that this upper limit is approached for experimental T. The resistivity then saturates. For a model of transition metal compounds with weakly interacting electrons, the upper limit corresponds to a mean free path consistent with the Ioffe-Regel condition. For a model of the high Tc cuprates with strongly interacting electrons, however, the upper limit is much larger than the Ioffe-Regel condition suggests. Since this limit is not exceeded by experimental data, the data are consistent with saturation also for the cuprates. After "saturation" the resistivity usually grows slowly. For the alkali-doped fullerenes, "saturation" can be considered to have happened already for T=0, due to orientational disorder. For these systems, however, the resistivity grows so rapidly after "saturation" that this concept is meaningless. This is due to the small band width and to the coupling to the level energies of the important phonons.Comment: 22 pages, RevTeX, 19 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/fullerene

    FRP-to-masonry bond durability assessment with infrared thermography method

    Get PDF
    The bond behavior between FRP composites and masonry substrate plays an important role in the performance of externally bonded reinforced masonry structures. Therefore, monitoring the bond quality during the application and subsequent service life of a structure is of crucial importance for execution control and structural health monitoring. The bond quality can change during the service life of the structure due to environmental conditions. Local detachments may occur at the FRP/substrate interface, affecting the bond performance to a large extent. Therefore, the use of expedite and efficient non-destructive techniques for assessment of the bond quality and monitoring FRP delamination is of much interest. Active infrared thermography (IR) technique was used in this study for assessing the bond quality in environmentally degraded FRP-strengthened masonry elements. The applicability and accuracy of the adopted method was initially validated by localization and size quantification of artificially embedded defects in FRP-strengthened brick specimens. Then, the method was used for investigating the appearance and progression of FRP delaminations due to environmental conditions. GFRP-strengthened brick specimens were exposed to accelerated hygrothermal ageing tests and inspected periodically with the IR camera. The results showed environmental exposure may produce large progressive FRP delaminations.Fundação para a Ciência e Tecnologi

    Finite temperature mobility of a particle coupled to a fermion environment

    Full text link
    We study numerically the finite temperature and frequency mobility of a particle coupled by a local interaction to a system of spinless fermions in one dimension. We find that when the model is integrable (particle mass equal to the mass of fermions) the static mobility diverges. Further, an enhanced mobility is observed over a finite parameter range away from the integrable point. We present a novel analysis of the finite temperature static mobility based on a random matrix theory description of the many-body Hamiltonian.Comment: 11 pages (RevTeX), 5 Postscript files, compressed using uufile

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Finite-Temperature Transport in Finite-Size Hubbard Rings in the Strong-Coupling Limit

    Full text link
    We study the current, the curvature of levels, and the finite temperature charge stiffness, D(T,L), in the strongly correlated limit, U>>t, for Hubbard rings of L sites, with U the on-site Coulomb repulsion and t the hopping integral. Our study is done for finite-size systems and any band filling. Up to order t we derive our results following two independent approaches, namely, using the solution provided by the Bethe ansatz and the solution provided by an algebraic method, where the electronic operators are represented in a slave-fermion picture. We find that, in the U=\infty case, the finite-temperature charge stiffness is finite for electronic densities, n, smaller than one. These results are essencially those of spinless fermions in a lattice of size L, apart from small corrections coming from a statistical flux, due to the spin degrees of freedom. Up to order t, the Mott-Hubbard gap is \Delta_{MH}=U-4t, and we find that D(T) is finite for n<1, but is zero at half-filling. This result comes from the effective flux felt by the holon excitations, which, due to the presence of doubly occupied sites, is renormalized to \Phi^{eff}=\phi(N_h-N_d)/(N_d+N_h), and which is zero at half-filling, with N_d and N_h being the number of doubly occupied and empty lattice sites, respectively. Further, for half-filling, the current transported by any eigenstate of the system is zero and, therefore, D(T) is also zero.Comment: 15 pages and 6 figures; accepted for PR
    corecore