76,549 research outputs found
Justification of binder material selection for carbon particles incorporation into fibrous electromagnetic radiation absorber
The paper presents justification of a binder material for incorporating carbon particles into the interfiber space of electromagnetic radiation absorber. A method for carbon particles incorporation into a fibrous material has been developed. It is based on applying a carbon-containing nanocomposite to the fibrous material’s surface. Previously, the research of carbon particles incorporation into a synthetic material by using an aqueous solution were carried out, which ensured a uniform distribution of carbon particles in the material structure. However, the properties of the material have changed significantly upon mechanical deformation. Therefore, the carbon particles incorporation process was investigated using various nanocomposites obtained on the basis of mixtures of vinyl acetate polymer, or epoxy polymer, or surface-active substance with carbon black. Based on the results of electron microscopic analysis and the reflection and transmission coefficients frequency dependences in the frequency range 0.7–17 GHz, the efficiency of using a nanocomposite based on a mixture of surface-active substance and carbon black to create electromagnetic radiation absorbers was justified. Such electromagnetic radiation absorbers have the transmission coefficient value about –18 dB and reflection coefficient value about –12 dB in the frequency range 7–13 GHz. Carbon-containing electromagnetic radiation absorbers based on fibrous material have thickness less than 3 mm, properties of flexibility and resistance to mechanical deformation. It can be used in various fields, in particular for hiding objects from radio frequency reconnaissance or protecting equipment from external interference.The paper presents justification of a binder material for incorporating carbon particles into the interfiber space of electromagnetic radiation absorber. A method for carbon particles incorporation into a fibrous material has been developed. It is based on applying a carbon-containing nanocomposite to the fibrous material’s surface. Previously, the research of carbon particles incorporation into a synthetic material by using an aqueous solution were carried out, which ensured a uniform distribution of carbon particles in the material structure. However, the properties of the material have changed significantly upon mechanical deformation. Therefore, the carbon particles incorporation process was investigated using various nanocomposites obtained on the basis of mixtures of vinyl acetate polymer, or epoxy polymer, or surface-active substance with carbon black. Based on the results of electron microscopic analysis and the reflection and transmission coefficients frequency dependences in the frequency range 0.7–17 GHz, the efficiency of using a nanocomposite based on a mixture of surface-active substance and carbon black to create electromagnetic radiation absorbers was justified. Such electromagnetic radiation absorbers have the transmission coefficient value about –18 dB and reflection coefficient value about –12 dB in the frequency range 7–13 GHz. Carbon-containing electromagnetic radiation absorbers based on fibrous material have thickness less than 3 mm, properties of flexibility and resistance to mechanical deformation. It can be used in various fields, in particular for hiding objects from radio frequency reconnaissance or protecting equipment from external interference
Possible Quantum Spin Liquid States on the Triangular and Kagome Lattices
The frustrated spin-one-half Heisenberg model on triangualr and Kagome
Lattices is mapped onto a single specis of fermion carrying statistical flux.
The corresponding Chern-Simons gauge theory is analyzed at the Gaussian level
and found to be massive. This provides a new motivation for the spin-liquid
Kalmeyer-Laughlin wave function. Good overlap of this wave function with the
numerical ground state is found for small clusters.Comment: 13 pages, revtex. IUCM-920
Comparison of Fermi-LAT and CTA in the region between 10-100 GeV
The past decade has seen a dramatic improvement in the quality of data
available at both high (HE: 100 MeV to 100 GeV) and very high (VHE: 100 GeV to
100 TeV) gamma-ray energies. With three years of data from the Fermi Large Area
Telescope (LAT) and deep pointed observations with arrays of Cherenkov
telescope, continuous spectral coverage from 100 MeV to TeV exists for
the first time for the brightest gamma-ray sources. The Fermi-LAT is likely to
continue for several years, resulting in significant improvements in high
energy sensitivity. On the same timescale, the Cherenkov Telescope Array (CTA)
will be constructed providing unprecedented VHE capabilities. The optimisation
of CTA must take into account competition and complementarity with Fermi, in
particularly in the overlapping energy range 10100 GeV. Here we compare the
performance of Fermi-LAT and the current baseline CTA design for steady and
transient, point-like and extended sources.Comment: Accepted for Publication in Astroparticle Physic
Predicting Intermediate Storage Performance for Workflow Applications
Configuring a storage system to better serve an application is a challenging
task complicated by a multidimensional, discrete configuration space and the
high cost of space exploration (e.g., by running the application with different
storage configurations). To enable selecting the best configuration in a
reasonable time, we design an end-to-end performance prediction mechanism that
estimates the turn-around time of an application using storage system under a
given configuration. This approach focuses on a generic object-based storage
system design, supports exploring the impact of optimizations targeting
workflow applications (e.g., various data placement schemes) in addition to
other, more traditional, configuration knobs (e.g., stripe size or replication
level), and models the system operation at data-chunk and control message
level.
This paper presents our experience to date with designing and using this
prediction mechanism. We evaluate this mechanism using micro- as well as
synthetic benchmarks mimicking real workflow applications, and a real
application.. A preliminary evaluation shows that we are on a good track to
meet our objectives: it can scale to model a workflow application run on an
entire cluster while offering an over 200x speedup factor (normalized by
resource) compared to running the actual application, and can achieve, in the
limited number of scenarios we study, a prediction accuracy that enables
identifying the best storage system configuration
Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates
Finite temperature simulations are used to study quadrupole excitations of a
trapped Bose-Einstein condensate. We focus specifically on the m=0 mode, where
a long-standing theoretical problem has been to account for an anomalous
variation of the mode frequency with temperature. We explain this behavior in
terms of the excitation of two separate modes, corresponding to coupled motion
of the condensate and thermal cloud. The relative amplitudes of the modes
depends sensitively on the temperature and on the frequency of the harmonic
drive used to excite them. Good agreement with experiment is found for
appropriate drive frequencies.Comment: 4 pages, 3 figure
Role of the potential landscape on the single-file diffusion through channels.
Transport of colloid particles through narrow channels is ubiquitous in cell biology as well as becoming increasingly important for microfluidic applications or targeted drug delivery. Membrane channels in cells are useful models for artificial designs because of their high efficiency, selectivity, and robustness to external fluctuations. Here, we model the passive channels that let cargo simply diffuse through them, affected by a potential profile along the way. Passive transporters achieve high levels of efficiency and specificity from binding interactions with the cargo inside the channel. This however leads to a paradox: why should channels which are so narrow that they are blocked by their cargo evolve to have binding regions for their cargo if that will effectively block them? Using Brownian dynamics simulations, we show that different potentials, notably symmetric, increase the flux through narrow passive channels - and investigate how shape and depth of potentials influence the flux. We find that there exist optimal depths for certain potential shapes and that it is most efficient to apply a small force over an extended region of the channel. On the other hand, having several spatially discrete binding pockets will not alter the flux significantly. We also explore the role of many-particle effects arising from pairwise particle interactions with their neighbours and demonstrate that the relative changes in flux can be accounted for by the kinetics of the absorption reaction at the end of the channel.Simulations were funded by the
Cavendish Laboratory teaching committee and per-
formed using the Darwin Supercomputer of the Univer-
sity of Cambridge High Performance Computing Service
(http://www.hpc.cam.ac.uk/), provided by Dell Inc. us-
ing Strategic Research Infrastructure Funding from the
Higher Education Funding Council for England.This is the accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jcp/141/22/10.1063/1.490317
A remark on the three approaches to 2D Quantum gravity
The one-matrix model is considered. The generating function of the
correlation numbers is defined in such a way that this function coincide with
the generating function of the Liouville gravity. Using the Kontsevich theorem
we explain that this generating function is an analytic continuation of the
generating function of the Topological gravity. We check the topological
recursion relations for the correlation functions in the -critical Matrix
model.Comment: 11 pages. Title changed, presentation improve
Swift J164449.3+573451 event: generation in the collapsing star cluster?
We discuss the multiband energy release in a model of a collapsing galactic
nucleus, and we try to interpret the unique super-long cosmic gamma-ray event
Swift J164449.3+573451 (GRB 110328A by early classification) in this scenario.
Neutron stars and stellar-mass black holes can form evolutionary a compact
self-gravitating subsystem in the galactic center. Collisions and merges of
these stellar remnants during an avalanche contraction and collapse of the
cluster core can produce powerful events in different bands due to several
mechanisms. Collisions of neutron stars and stellar-mass black holes can
generate gamma-ray bursts (GRBs) similar to the ordinary models of short GRB
origin. The bright peaks during the first two days may also be a consequence of
multiple matter supply (due to matter release in the collisions) and accretion
onto the forming supermassive black hole. Numerous smaller peaks and later
quasi-steady radiation can arise from gravitational lensing, late accretion of
gas onto the supermassive black hole, and from particle acceleration by shock
waves. Even if this model will not reproduce exactly all the Swift
J164449.3+573451 properties in future observations, such collapses of galactic
nuclei can be available for detection in other events.Comment: 7 pages, replaced by the final versio
- …