647 research outputs found

    Stable Chromomagnetic QCD Vacuum and Confinement

    Full text link
    The stable chromomagnetic vacuum for SU(2) Yang-Mills theory found earlier is shown to give a model for confinement in QCD, using Wilson loop, and a linear potential (in the leading order) for quark-antiquark interaction. The coefficient kk in this potential is found to be 0.25GeV2\sim 0.25 GeV^2, in satisfactory agreement with non-relativistic potential model calculations for charmonium. At finite temperature, the real effective energy density found earlier is used to obtain estimates of the deconfining temperature agreeing reasonably with lattice study for SU(2).Comment: Talk delivered at the conference on 'Strong Interactions in the 21st Century', held at the Tata Institute of Fundamental Research, Mumbai, Feb. 10 - 12, 201

    What we do understand of Colour Confinement

    Get PDF
    A review is presented of what we understand of colour confinement in QCD. Lattice formulation provides evidence that QCD vacuum is a dual superconductor: the chromoelectric field of a qqˉq\bar q pair is constrained by dual Meissner effect into a dual Abrikosov flux tube and the static potential energy is proportional to the distance.Comment: 10 pages, 5 figures, plenary talk at "Quark Matter 99", Torino, Italy, May 10-15, 199

    Glueball masses in the large N limit

    Full text link
    The lowest-lying glueball masses are computed in SU(NN) gauge theory on a spacetime lattice for constant value of the lattice spacing aa and for NN ranging from 3 to 8. The lattice spacing is fixed using the deconfinement temperature at temporal extension of the lattice NT=6N_T = 6. The calculation is conducted employing in each channel a variational ansatz performed on a large basis of operators that includes also torelon and (for the lightest states) scattering trial functions. This basis is constructed using an automatic algorithm that allows us to build operators of any size and shape in any irreducible representation of the cubic group. A good signal is extracted for the ground state and the first excitation in several symmetry channels. It is shown that all the observed states are well described by their large NN values, with modest O(1/N2){\cal O}(1/N^2) corrections. In addition spurious states are identified that couple to torelon and scattering operators. As a byproduct of our calculation, the critical couplings for the deconfinement phase transition for N=5 and N=7 and temporal extension of the lattice NT=6N_T=6 are determined.Comment: 1+36 pages, 22 tables, 21 figures. Typos corrected, conclusions unchanged, matches the published versio

    Is Confinement a Phase of Broken Dual Gauge Symmetry?

    Full text link
    We study whether broken dual gauge symmetry, as detected by a monopole order parameter introduced by the Pisa group, is necessarily associated with the confinement phase of a lattice gauge theory. We find a number of examples, including SU(2) gauge-Higgs theory, mixed fundamental-adjoint SU(2) gauge theory, and pure SU(5) gauge theory, which appear to indicate a dual gauge symmetry transition in the absence of a transition to or from a confined phase. While these results are not necessarily fatal to the dual superconductor hypothesis, they may pose some problems of interpretation for the present formulation of the Pisa monopole criterion.Comment: 6 pages, 5 figure

    Deconfinement Phase Transition in Hot and Dense QCD at Large N

    Full text link
    We conjecture that the confinement- deconfinement phase transition in QCD at large number of colors NN and NfNN_f\ll N at T0T\neq 0 and μ0\mu\neq 0 is triggered by the drastic change in θ\theta behavior. The conjecture is motivated by the holographic model of QCD where confinement -deconfinement phase transition indeed happens precisely at T=TcT=T_c where θ\theta dependence experiences a sudden change in behavior. The conjecture is also supported by quantum field theory arguments when the instanton calculations (which trigger the θ\theta dependence) are under complete theoretical control for T>TcT>T_c, suddenly break down immediately below T<TcT<T_c with sharp changes in the θ\theta dependence. Finally, the conjecture is supported by a number of numerical lattice results. We employ this conjecture to study confinement -deconfinement phase transition of hot and dense QCD in large NN limit by analyzing the θ\theta dependence. We estimate the critical values for TcT_c and μc\mu_c where the phase transition happens by approaching the critical values from the hot and/or dense regions where the instanton calculations are under complete theoretical control. We also describe some defects of various codimensions within a holographic model of QCD by focusing on their role around the phase transition point.Comment: Talk at the Workshop honoring 60th anniversary of Misha Shifma

    k-String tensions and their large-N dependence

    Full text link
    We consider whether the 1/N corrections to k-string tensions must begin at order 1/N^2, as in the Sine Law, or whether odd powers of 1/N, as in Casimir Scaling, are also acceptable. The issue is important because different models of confinement differ in their predictions for the representation-dependence of k-string tensions, and corrections involving odd powers of 1/N would seem to be ruled out by the large-N expansion. We show, however, that k-string tensions may, in fact, have leading 1/N corrections, and consistency with the large-N expansion, in the open string sector, is achieved by an exact pairwise cancellation among terms involving odd powers of 1/N in particular combinations of Wilson loops. It is shown how these cancellations come about in a concrete example, namely, strong coupling lattice gauge theory with the heat-kernel action, in which k-string tensions follow the Casimir scaling rule.Comment: Talk presented at the XXIX International Symposium on Lattice Field Theory - Lattice 2011, July 10-16, 2011, Squaw Valley, Lake Tahoe, Californi

    Colour confinement and dual superconductivity of the vacuum - I

    Get PDF
    We study dual superconductivity of the ground state of SU(2) gauge theory, in connection with confinement. We do that measuring on the lattice a disorder parameter describing condensation of monopoles. Confinement appears as a transition to dual superconductor, independent of the abelian projection defining monopoles. Some speculations are made on the existence of a more appropriate disorder parameter. A similar study for SU(3) is presented in a companion paper.Comment: Some typos corrected, acknowledgements added; to appear on Phys. Rev.
    corecore