25 research outputs found

    Carcinogenic Effects in a Phenylketonuria Mouse Model

    Get PDF
    Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer

    Becoming Banjar : identity and ethnicity in South Kalimantan, Indonesia

    No full text
    The author of this paper is concerned with what Banjar mean by 'Banjar', it is not her intention to discover an essential, authentic or primordial meaning. Identities, of course, are not fixed in space and time, but rather 'socially constructed, historically conditioned, and culturally mediated' (Rosaldo 1988:161), and it is the social construction, historical conditioning and cultural mediation of the identity 'Banjar' which forms the focus of this paper

    Cross-Amplification and Validation of SNPs Conserved over 44 Million Years between Seals and Dogs

    Get PDF
    Hoffman J, Thorne MAS, McEwing R, Forcada J, Ogden R. Cross-Amplification and Validation of SNPs Conserved over 44 Million Years between Seals and Dogs. PLoS ONE. 2013;8(7): e68365.High-density SNP arrays developed for humans and their companion species provide a rapid and convenient tool for generating SNP data in closely-related non-model organisms, but have not yet been widely applied to phylogenetically divergent taxa. Consequently, we used the CanineHD BeadChip to genotype 24 Antarctic fur seal (Arctocephalus gazella) individuals. Despite seals and dogs having diverged around 44 million years ago, 33,324 out of 173,662 loci (19.2%) could be genotyped, of which 173 were polymorphic and clearly interpretable. Two SNPs were validated using KASP genotyping assays, with the resulting genotypes being 100% concordant with those obtained from the high-density array. Two loci were also confirmed through in silico visualisation after mapping them to the fur seal transcriptome. Polymorphic SNPs were distributed broadly throughout the dog genome and did not differ significantly in proximity to genes from either monomorphic SNPs or those that failed to cross-amplify in seals. However, the nearest genes to polymorphic SNPs were significantly enriched for functional annotations relating to energy metabolism, suggesting a possible bias towards conserved regions of the genome
    corecore