77 research outputs found
A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state
In a recent paper, Wisdom (2007, Icarus, in press) derived concise
expressions for the rate of tidal dissipation in a synchronously rotating body
for arbitrary orbital eccentricity and obliquity. He provided numerical
evidence than the derived rate is always larger than in an asymptotic
nonsynchronous rotation state at any obliquity and eccentricity. Here, I
present a simple mathematical proof of this conclusion and show that this
result still holds for any spin-orbit resonance.Comment: 10 pages, 0 figure. accepted for publication in "Icarus
Habitable planets around the star Gl 581?
Radial velocity surveys are now able to detect terrestrial planets at
habitable distance from M-type stars. Recently, two planets with minimum masses
below 10 Earth masses were reported in a triple system around the M-type star
Gliese 581. Using results from atmospheric models and constraints from the
evolution of Venus and Mars, we assess the habitability of planets Gl 581c and
Gl 581d and we discuss the uncertainties affecting the habitable zone (HZ)
boundaries determination. We provide simplified formulae to estimate the HZ
limits that may be used to evaluate the astrobiological potential of
terrestrial exoplanets that will hopefully be discovered in the near future.
Planets Gl 581c and 'd' are near, but outside, what can be considered as the
conservative HZ. Planet 'c' receives 30% more energy from its star than Venus
from the Sun, with an increased radiative forcing caused by the spectral energy
distribution of Gl 581. Its habitability cannot however be positively ruled out
by theoretical models due to uncertainties affecting cloud properties.
Irradiation conditions of planet 'd' are comparable with those of early Mars.
Thanks to the warming effect of CO2-ice clouds planet 'd' might be a better
candidate for the first exoplanet known to be potentially habitable. A mixture
of various greenhouse gases could also maintain habitable conditions on this
planet.Comment: Astronomy and Astrophysics (2007) accepted for publicatio
Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity
In this paper, we present the consistent evolution of short-period exoplanets
coupling the tidal and gravothermal evolution of the planet. Contrarily to
previous similar studies, our calculations are based on the complete tidal
evolution equations of the Hut model, valid at any order in eccentricity,
obliquity and spin. We demonstrate, both analytically and numerically, that,
except if the system was formed with a nearly circular orbit (e<0.2), solving
consistently the complete tidal equations is mandatory to derive correct tidal
evolution histories. We show that calculations based on tidal models truncated
at second order in eccentricity, as done in all previous studies, lead to
erroneous tidal evolutions. As a consequence, tidal energy dissipation rates
are severely underestimated in all these calculations and the characteristic
timescales for the various orbital parameters evolutions can be wrong by up to
three orders in magnitude.
Based on these complete, consistent calculations, we revisit the viability of
the tidal heating hypothesis to explain the anomalously large radius of
transiting giant planets. We show that, even though tidal dissipation does
provide a substantial contribution to the planet's heat budget and can explain
some of the moderately bloated hot-Jupiters, this mechanism can not explain
alone the properties of the most inflated objects, including HD 209458b.
Indeed, solving the complete tidal equations shows that enhanced tidal
dissipation and thus orbit circularization occur too early during the planet's
evolution to provide enough extra energy at the present epoch. In that case
another mechanisms, such as stellar irradiation induced surface winds
dissipating in the planet's tidal bulges, or inefficient convection in the
planet's interior must be invoked, together with tidal dissipation, to provide
all the pieces of the abnormally large exoplanet puzzle.Comment: 14 pages, 10 figures, Accepted for publication in Astronomy and
Astrophysics
Structure and evolution of the first CoRoT exoplanets: Probing the Brown Dwarf/Planet overlapping mass regime
We present detailed structure and evolution calculations for the first
transiting extrasolar planets discovered by the space-based CoRoT mission.
Comparisons between theoretical and observed radii provide information on the
internal composition of the CoRoT objects. We distinguish three different
categories of planets emerging from these discoveries and from previous
ground-based surveys: (i) planets explained by standard planetary models
including irradiation, (ii) abnormally bloated planets and (iii) massive
objects belonging to the overlapping mass regime between planets and brown
dwarfs. For the second category, we show that tidal heating can explain the
relevant CoRoT objects, providing non-zero eccentricities. We stress that the
usual assumption of a quick circularization of the orbit by tides, as usually
done in transit light curve analysis, is not justified a priori, as suggested
recently by Levrard et al. (2009), and that eccentricity analysis should be
carefully redone for some observations. Finally, special attention is devoted
to CoRoT-3b and to the identification of its very nature: giant planet or brown
dwarf ? The radius determination of this object confirms the theoretical
mass-radius predictions for gaseous bodies in the substellar regime but, given
the present observational uncertainties, does not allow an unambiguous
identification of its very nature. This opens the avenue, however, to an
observational identification of these two distinct astrophysical populations,
brown dwarfs and giant planets, in their overlapping mass range, as done for
the case of the 8 Jupiter-mass object Hat-P-2b. (abridged)Comment: 6 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
On the equilibrium rotation of Earth-like extra-solar planets
The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets
is often assumed to be synchronous with their orbital mean motion. The same
assumption persisted for Mercury and Venus until radar observations revealed
their true spin rates. As many of these planets follow eccentric orbits and are
believed to host dense atmospheres, we expect the equilibrium rotation to
differ from the synchronous motion. Here we provide a general description of
the allowed final equilibrium rotation states of these planets, and apply this
to already discovered cases in which the mass is lower than twelve
Earth-masses. At low obliquity and moderate eccentricity, it is shown that
there are at most four distinct equilibrium possibilities, one of which can be
retrograde. Because most presently known "Earth-like" planets present eccentric
orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and
Astrophysics. to be published in Astronomy and Astrophysic
Transmission spectroscopy of the sodium 'D' doublet in WASP-17b with the VLT
The detection of increased sodium absorption during primary transit implies
the presence of an atmosphere around an extrasolar planet, and enables us to
infer the structure of this atmosphere. Sodium has only been detected in the
atmospheres of two planets to date - HD189733b and HD209458b. WASP-17b is the
least dense planet currently known. It has a radius approximately twice that of
Jupiter and orbits an F6-type star. The transit signal is expected to be about
five times larger than that observed in HD209458b. We obtained 24 spectra with
the GIRAFFE spectrograph on the VLT, eight during transit. The integrated flux
in the sodium doublet at wavelengths 5889.95 and 5895.92 {\AA} was measured at
bandwidths 0.75, 1.5, 3.0, 4.0, 5.0, and 6.0 {\AA}. We find a transit depth of
0.55 \pm 0.13 per cent at 1.5 {\AA}. This suggests that, like HD209458b,
WASP-17b has an atmosphere depleted in sodium compared to models for a
cloud-free atmosphere with solar sodium abundance. We observe a sharp cut-off
in sodium absorption between 3.0 and 4.0 {\AA} which may indicate a layer of
clouds high in the atmosphere.Comment: Amended for typographic conventions following publicatio
Skin vascular resistance in the standing position increases significantly after 7 days of dry immersion
Actual and simulated microgravity induces hypovolemia and cardiovascular deconditioning, associated with vascular dysfunction. We hypothesized that vasoconstriction of skin microcirculatory bed should be altered following 7 days of simulated microgravity in order to maintain cardiovascular homeostasis during active standing. Eight healthy men were studied before and after 7 days of simulated microgravity modeled by dry immersion (DI). Changes of plasma volume and orthostatic tolerance were evaluated. Calf skin blood flow (laser-Doppler flowmetry), ECG and blood pressure signal during a 10-min stand test were recorded, and skin vascular resistance, central hemodynamics, baroreflex sensitivity and heart rate variability were estimated. After DI we observed increased calf skin vascular resistance in the standing position (12.0 +/- 1.0 AU-after- vs. 6.8 +/- 1.4 AU-before), while supine it was unchanged. Cardiovascular deconditioning was confirmed by greater tachycardia on standing and by hypovolemia (-16 +/- 3% at day 7 of DI). Total peripheral resistance and indices of cardiovascular autonomic control were not modified. In conclusion, unchanged autonomic control and total peripheral resistance suggest that increased skin vasoconstriction to standing involves rather local mechanisms-as venoarteriolar reflex-and might compensate insufficient vasoconstriction of other vascular beds
Tidal evolution of exo-planetary systems: WASP-50, GJ 1214 and CoRoT-7
We perform numerical simulations to investigate tidal evolution of two
single-planet systems, that is, WASP-50 and GJ 1214 and a two-planet system
CoRoT-7. The results of orbital evolution show that tidal decay and
circularization may play a significant role in shaping their final orbits,
which is related to the initial orbital data in the simulations. For GJ 1214
system, different cases of initial eccentricity are also considered as only an
upper limit of its eccentricity (0.27) is shown, and the outcome suggests a
possible maximum initial eccentricity (0.4) in the adopted dynamical model.
Moreover, additional runs with alternative values of dissipation factor
are carried out to explore tidal evolution for GJ 1214b, and these
results further indicate that the real of GJ 1214b may be much
larger than its typical value, which may reasonably suggest that GJ 1214b bears
a present-day larger eccentricity, undergoing tidal circularization at a slow
rate. For the CoRoT-7 system, tidal forces make two planets migrating towards
their host star as well as producing tidal circularization, and in this process
tidal effects and mutual gravitational interactions are coupled with each
other. Various scenarios of the initial eccentricity of the outer planet have
also been done to investigate final planetary configuration. Tidal decay
arising from stellar tides may still work for each system as the eccentricity
decreases to zero, and this is in association with the remaining lifetime of
each planet used to predict its future.Comment: 9 pages, 12 figures, accepted for publication in "SCIENCE CHINA
Physics,Mechanics & Astronomy
North to south asymmetries in the water‐equivalent hydrogen distribution at high latitudes on Mars
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95381/1/jgre2434.pd
- …