18 research outputs found

    Comparative Characterization of Crofelemer Samples Using Data Mining and Machine Learning Approaches With Analytical Stability Data Sets

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.There is growing interest in generating physicochemical and biological analytical data sets to compare complex mixture drugs, for example, products from different manufacturers. In this work, we compare various crofelemer samples prepared from a single lot by filtration with varying molecular weight cutoffs combined with incubation for different times at different temperatures. The 2 preceding articles describe experimental data sets generated from analytical characterization of fractionated and degraded crofelemer samples. In this work, we use data mining techniques such as principal component analysis and mutual information scores to help visualize the data and determine discriminatory regions within these large data sets. The mutual information score identifies chemical signatures that differentiate crofelemer samples. These signatures, in many cases, would likely be missed by traditional data analysis tools. We also found that supervised learning classifiers robustly discriminate samples with around 99% classification accuracy, indicating that mathematical models of these physicochemical data sets are capable of identifying even subtle differences in crofelemer samples. Data mining and machine learning techniques can thus identify fingerprint-type attributes of complex mixture drugs that may be used for comparative characterization of products

    Chemical Stability of the Botanical Drug Substance Crofelemer: A Model System for Comparative Characterization of Complex Mixture Drugs

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.As the second of a 3-part series of articles in this issue concerning the development of a mathematical model for comparative characterization of complex mixture drugs using crofelemer (CF) as a model compound, this work focuses on the evaluation of the chemical stability profile of CF. CF is a biopolymer containing a mixture of proanthocyanidin oligomers which are primarily composed of gallocatechin with a small contribution from catechin. CF extracted from drug product was subjected to molecular weight–based fractionation and thiolysis. Temperature stress and metal-catalyzed oxidation were selected for accelerated and forced degradation studies. Stressed CF samples were size fractionated, thiolyzed, and analyzed with a combination of negative-ion electrospray ionization mass spectrometry (ESI-MS) and reversed-phase-HPLC with UV absorption and fluorescence detection. We further analyzed the chemical stability data sets for various CF samples generated from reversed-phase-HPLC-UV and ESI-MS using data-mining and machine learning approaches. In particular, calculations based on mutual information of over 800,000 data points in the ESI-MS analytical data set revealed specific CF cleavage and degradation products that were differentially generated under specific storage/degradation conditions, which were not initially identified using traditional analysis of the ESI-MS results
    corecore