536 research outputs found
Improved ventricular function during inhalation of PGI(2) aerosol partly relies on enhanced myocardial contractility
Inhaled prostacyclin (PGI(2)) aerosol induces selective pulmonary vasodilation. Further, it improves right ventricular ( RV) function, which may largely rely on pulmonary vasodilation, but also on enhanced myocardial contractility. We investigated the effects of the inhaled PGI(2) analogs epoprostenol (EPO) and iloprost (ILO) on RV function and myocardial contractility in 9 anesthetized pigs receiving aerosolized EPO (25 and 50 ng center dot kg(-1) center dot min(-1)) and, consecutively, ILO (60 ng center dot kg(-1) center dot min(-1)) for 20 min each. We measured pulmonary artery pressure ( PAP), RV ejection fraction (RVEF) and RV end-diastolic-volume (RV-EDV), and left ventricular end-systolic pressure-volume-relation (end-systolic elastance, E-es). EPO and ILO reduced PAP, increased RVEF and reduced RVEDV. E-es was enhanced during all doses tested, which reached statistical significance during EPO25ng and ILO, but not during EPO50ng. PGI(2) aerosol enhances myocardial contractility in healthy pigs, contributing to improve RV function. Copyright (C) 2005 S. Karger AG, Basel
A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK
High-resolution transmission electron microscopy (HRTEM) measurements of the thickness of white mica crystallites were made on three pelite samples that represented a prograde transition from diagenetic mudstone though anchizonal slate to epizonal slate. Crystallite thickness, measured normal to (001), increases as grade increases, whereas the XRD measured 10 Å peak-profile, the Kubler index, decreases. The mode of the TEM-measured size population can be correlated with the effective crystallite size N (001) determined by XRD. The results indicate that the Kubler index of white mica crystallinity measures changes in the crystallite size population that result from prograde increases in the size of coherent X-ray scattering domains. These changes conform to the Scherrer relationship between XRD peak broadening and small crystallite size. Lattice ‘strain’ broadening is relatively unimportant, and is confined to white mica populations in the diagenetic mudstone. Rapid increases in crystallite size occur in the anchizone, coincident with cleavage development. Changes in the distribution of crystallite thickness with advancing grade and cleavage development are characteristic of grain-growth by Ostwald ripening. The Kubler index rapidly loses sensitivity as an indicator of metapelitic grade within the epizone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47293/1/410_2004_Article_BF00306406.pd
Sound Studies Meets Deaf Studies
Sound studies and Deaf studies may seem at first impression to operate in worlds apart. We argue in this article, however, that similar renderings of hearing, deafness, and seeing as ideal types - and as often essentialized sensory modes - make it possible to read differences between Sound studies and Deaf studies as sites of possible articulation. We direct attention to four zones of productive overlap, attending to how sound is inferred in deaf and Deaf practice, how reimagining sound in the register of low-frequency vibration can upend deafhearing dichotomies, how “deaf futurists“ champion cyborg sound, and how signing and other non-spoken communicative practices might undo phonocentric models of speech. Sound studies and Deaf studies emerge as fields with much to offer one another epistemologically, theoretically, and practically
Dioctahedral mixed K-Na-micas and paragonite in diagenetic to low-temperature metamorphic terrains: bulk rock chemical, thermodynamic and textural constraints
Abstract
Metamorphic mineral assemblages in low-temperature metaclastic rocks often contain paragonite and/or its precursor metastable phase (mixed K-Na-white mica). Relationships between the bulk rock major element chemistries and the formation of paragonite at seven localities from Central and SE-Europe were studied, comparing the bulk chemical characteristics with mineral assemblage, mineral chemical and metamorphic petrological data. Considerable overlaps between the projection fields of bulk chemistries of the Pg-free and Pg-bearing metaclastic rocks indicate significant differences between the actual (as analyzed) and effective bulk chemical compositions. Where inherited, clastic, inert phases/constituents were excluded, it was found that a decrease in Na/(Na+Al*) and in K/(K+Al*) ratios of rocks favors the formation and occurrence of Pg and its precursor phases (Al* denotes here the atomic quantity of aluminum in feldspars, white micas and “pure” hydrous or anhydrous aluminosilicates). In contrast to earlier suggestions, enrichment in Na and/or an increase in Na/K ratio by themselves do not lead to formation of paragonite. Bulk rock chemistries favorable to formation of paragonite and its precursor phases are characterized by enrichment in Al and depletion in Na, K, Ca (and also, Mg and Fe2+). Such bulk rock chemistries are characteristic of chemically “mature” (strongly weathered) source rocks of the pelites and may also be formed by synand post-sedimentary magmatism-related hydrothermal (leaching) activity. What part of the whole rock is active in determining the effective bulk chemistry was investigated by textural examination of diagenetic and anchizone-grade samples. It is hypothesized that although solid phases act as local sources and sinks, transport of elements such as Na through the grain boundaries have much larger communication distances. Sodium-rich white micas nucleate heterogeneously using existing phyllosilicates as templates and are distributed widely on the thin section scale. The results of modeling by THERMOCALC suggest that paragonite preferably forms at higher pressures in low-T metapelites. The stability fields of Pg-bearing assemblages increase, the Pg-in reaction line is shifted towards lower pressures, while the stability field of the Chl-Ms-Ab-Qtz assemblage decreases and is shifted towards higher temperatures with increasing Al* content and decreasing Na/(Na+Al*) and K/(K+Al*) ratios
Pressure Load: The Main Factor for Altered Gene Expression in Right Ventricular Hypertrophy in Chronic Hypoxic Rats
BACKGROUND: The present study investigated whether changes in gene expression in the right ventricle following pulmonary hypertension can be attributed to hypoxia or pressure loading. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish hypoxia from pressure-induced alterations, a group of rats underwent banding of the pulmonary trunk (PTB), sham operation, or the rats were exposed to normoxia or chronic, hypobaric hypoxia. Pressure measurements were performed and the right ventricle was analyzed by Affymetrix GeneChip, and selected genes were confirmed by quantitative PCR and immunoblotting. Right ventricular systolic blood pressure and right ventricle to body weight ratio were elevated in the PTB and the hypoxic rats. Expression of the same 172 genes was altered in the chronic hypoxic and PTB rats. Thus, gene expression of enzymes participating in fatty acid oxidation and the glycerol channel were downregulated. mRNA expression of aquaporin 7 was downregulated, but this was not the case for the protein expression. In contrast, monoamine oxidase A and tissue transglutaminase were upregulated both at gene and protein levels. 11 genes (e.g. insulin-like growth factor binding protein) were upregulated in the PTB experiment and downregulated in the hypoxic experiment, and 3 genes (e.g. c-kit tyrosine kinase) were downregulated in the PTB and upregulated in the hypoxic experiment. CONCLUSION/SIGNIFICANCE: Pressure load of the right ventricle induces a marked shift in the gene expression, which in case of the metabolic genes appears compensated at the protein level, while both expression of genes and proteins of importance for myocardial function and remodelling are altered by the increased pressure load of the right ventricle. These findings imply that treatment of pulmonary hypertension should also aim at reducing right ventricular pressure
Oxygen-Independent Stabilization of Hypoxia Inducible Factor (HIF)-1 during RSV Infection
BACKGROUND: Hypoxia-inducible factor 1 (HIF)-1alpha is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1alpha as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1alpha as transcriptional regulator during infections with RSV. METHODOLOGY, PRINCIPAL FINDINGS: We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1alpha. These studies revealed that RSV-positive cells also stained for HIF-1alpha, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1alpha protein 24 h after RSV infection. In contrast, HIF-1alpha activation was abolished utilizing UV-treated RSV. Moreover, HIF-alpha-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1alpha dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1alpha. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1alpha activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-alpha-activation in a murine in vivo model. CONCLUSIONS/SIGNIFICANCE: Taking together, these studies suggest hypoxia-independent activation of HIF-1alpha during infection with RSV in vitro and in vivo
Olfactory Interference during Inhibitory Backward Pairing in Honey Bees
Background: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/ memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or t
Advanced photocatalysts: Pinning single atom co-catalysts on titania nanotubes
Single atom (SA) catalysis, over the last 10 years, has become a forefront in heterogeneous catalysis, electrocatalysis, and most recently also in photocatalysis. Most crucial when engineering a SA catalyst/support system is the creation of defined anchoring points on the support surface to stabilize reactive SA sites. Here, a so far unexplored but evidently very effective approach to trap and stabilize SAs on a broadly used photocatalyst platform is introduced. In self-organized anodic TiO2 nanotubes, a high degree of stress is incorporated in the amorphous oxide during nanotube growth. During crystallization (by thermal annealing), this leads to a high density of Ti3+-O-v, surface defects that are hardly present in other common titania nanostructures (as nanoparticles). These defects are highly effective for SA iridium trapping. Thus a SA-Ir photocatalyst with a higher photocatalytic activity than for any classic co-catalyst arrangement on the semiconductive substrate is obtained. Hence, a tool for SA trapping on titania-based back-contacted platforms is provided for wide application in electrochemistry and photoelectrochemistry. Moreover, it is shown that stably trapped SAs provide virtually all photocatalytic reactivity, with turnover frequencies in the order of 4 x 10(6) h(-1) in spite of representing only a small fraction of the initially loaded SAs.Web of Science3130art. no. 210284
- …