26 research outputs found
Gene structure and expression characteristics of liver-expressed antimicrobial peptide-2 isoforms in mud loach (Misgurnus mizolepis, Cypriniformes)
The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to “leap” to the next level
Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis
The African clawed frog, Xenopus laevis, is able to withstand extremely arid conditions by estivating, in conjunction with dehydration tolerance and urea accumulation. Estivating X. laevis reduce their metabolic rate and recruit anaerobic glycolysis, driven by lactate dehydrogenase (LDH; E.C. 1.1.1.27) enzymes that reversibly convert pyruvate and NADH to lactate and NAD+, to meet newly established ATP demands. The present study investigated purified LDH from the liver of dehydrated and control X. laevis. LDH from dehydrated liver showed a significantly higher K m for l-lactate (1.74 fold), NAD+ (2.41 fold), and pyruvate (1.78 fold) in comparison to LDH from the liver of control frogs. In the presence of physiological levels of urea found in dehydrated animals, the K m values obtained for dehydrated LDH all returned to control LDH K m values. Dot blot analysis showed post-translational modifications may be responsible for the kinetic modification as the dehydrated form of LDH showed more phosphorylated serine residues (1.54 fold), less methylated lysine residues (0.43 fold), and a higher level of ubiquitination (1.90 fold) in comparison to control LDH. The physiological consequence of dehydration-induced LDH modification appears to adjust LDH function in conjunction with urea levels in dehydrated frogs. When urea levels are high during dehydration, LDH retains its normal function. Yet, as urea levels drop during rehydration, LDH function is reduced, possibly shunting pyruvate to the TCA cycle
Free-radical first responders: The characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog, Rana sylvatica
Background: The North American wood frog, Rana sylvatica, is able to overcome subzero conditions through overwintering in a frozen state. Freezing imposes ischemic and oxidative stress on cells as a result of cessation of blood flow. Superoxide dismutases (SODs) catalyze the redox reaction involving the dismutation of superoxide (O2-•) to molecular oxygen and hydrogen peroxide.Methods: The present study investigated the regulation of CuZnSOD and MnSOD kinetics as well as the transcript, protein and phosphorylation levels of purified enzyme from the muscle of control and frozen R. sylvatica.Results: CuZnSOD from frozen muscle showed a significantly higher Vmax (1.52 fold) in comparison to CuZnSOD from the muscle of control frogs. MnSOD from frozen muscle showed a significantly lower Km for O2-• (0.66 fold) in comparison to CuZnSOD from control frogs. MnSOD from frozen frogs showed higher phosphorylation of serine (2.36 fold) and tyrosine (1.27 fold) residues in comparison to MnSOD from control animals. Susceptibility to digestion via thermolysin after incubation with increasing amount of urea (Cm) was tested, resulting in no significant changes for CuZnSOD, whereas a significant change in MnSOD stability was observed between control (2.53 M urea) and frozen (2.92 M urea) frogs. Expressions of CuZnSOD and MnSOD were quantified at both mRNA and protein levels in frog muscle, but were not significantly different.Conclusion: The physiological consequence of freeze-induced SOD modification appears to adjust SOD function in freezing frogs.General significance: Augmented SOD activity may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia
Cytokine and Antioxidant Regulation in the Intestine of the Gray Mouse Lemur (Microcebus murinus) During Torpor
AbstractDuring food shortages, the gray mouse lemur (Microcebus murinus) of Madagascar experiences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpor on the immune system and antioxidant response in the gut of these animals. This interaction may be of critical importance given the trade-off between the energetically costly immune response and the need to defend against pathogen entry during hypometabolism. The protein levels of cytokines and antioxidants were measured in the small intestine (duodenum, jejunum, and ileum) and large intestine of aroused and torpid lemurs. While there was a significant decrease of some pro-inflammatory cytokines (IL-6 and TNF-α) in the duodenum and jejunum during torpor as compared to aroused animals, there was no change in anti-inflammatory cytokines. We observed decreased levels of cytokines (IL-12p70 and M-CSF), and several chemokines (MCP-1 and MIP-2) but an increase in MIP-1α in the jejunum of the torpid animals. In addition, we evaluated antioxidant response by examining the protein levels of antioxidant enzymes and total antioxidant capacity provided by metabolites such as glutathione (and others). Our results indicated that levels of antioxidant enzymes did not change between torpor and aroused states, although antioxidant capacity was significantly higher in the ileum during torpor. These data suggest a suppression of the immune response, likely as an energy conservation measure, and a limited role of antioxidant defenses in supporting torpor in lemur intestine
Effects of polymer-coated metal oxide nanoparticles on goldfish (<i>Carassius auratus</i>L.) neutrophil viability and function
152 Regulation of the antimicrobial peptide brevinin-1SY in the skin of Rana sylvatica in response to environmental stress
Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration
Brevinin-1SY is the only described antimicrobial peptide (AMP) of Rana sylvatica. As AMPs are important innate immune molecules that inhibit microbes, this study examined brevinin-1SY regulation during development and in adult frogs in response to environmental stress. The brevinin-1SY nucleotide sequence was identified and used for protein modeling. Brevinin-1SY was predicted to be an amphipathic, hydrophobic, alpha helical peptide that inserts into a lipid bilayer. Brevinin-1SY transcripts were detected in tadpoles and were significantly increased during the later stages of development. Effects of environmental stress (24 h anoxia, 40% dehydration or 24 h frozen) on the mRNA levels of brevinin-1SY in the dorsal and ventral skin were examined. The brevinin-1SY mRNA levels were increased in dorsal and ventral skin of dehydrated frogs, and in ventral skin of anoxic frogs, compared with controls (non-stressed). Brevinin-1SY protein levels in peptide extracts of dorsal skin showed a similar, but not significant, trend to that of brevinin-1SY mRNA levels. Antimicr
